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Abstract

We consider three questions surrounding computable structures and orderings.

First, we make progress toward answering a question of Downey, Hirschfeldt, and Gon-

charov by showing that for a large class of countable linear orderings, the Turing degree

spectrum of the successor relation is closed upward in the c.e. degrees.

Next we consider computable partial orders (specifically, finitely branching trees) with,

in addition to their ordered structure, finite-range functions (coloring functions) on the

collection of chains of length n in the ordering. In the style of Ramsey, we prove the

existence of a monochromatic substructure and analyze the axiomatic content of this theorem

in the context of reverse mathematics. Then we provide a bound on the complexity of the

monochromatic substructure in the case that the coloring function is computable.

Finally, we consider computable algebraic structures (in particular, groups and semi-

groups) and the algorithmic complexity of orderings of their elements. We give conditions

sufficient to ensure that a group has orderings of arbitrary computability theoretic complex-

ity (in a strong sense), discuss an interesting example, and give a useful representation of

the orderings of a computable semigroup as paths in a computable binary tree.
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Chapter 1

Introduction

In many parts of mathematics, ordered structures play a fundamental role. The natural

numbers in their usual ordering, collections of nested sets (ordered by containment), trees,

Boolean algebras, and other partial orders—these kinds of structures are pervasive and indis-

pensable in mathematics as we know it. In this dissertation, we consider the computability

theoretic properties of ordered computable structures. Even when it is possible to know (by

running a program) any finite basic piece of information about a structure, it is not neces-

sarily the case that we may find any information we like, finite or otherwise. This provides

much of the motivation for what follows.

1.1 Basic notions from computability theory

Our formalization begins with the notion of computability1. A set, function, or relation on

the natural numbers, N, is computable if there is a Turing machine (or a computer program in

1See [52] for a thorough exposition.
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an acceptable2 programming system) that computes membership, output, and truth value,

respectively, for any natural number input. Once a programming system is selected and

fixed, programs in that language may be enumerated in a systematic way by listing finite

syntactically correct strings of symbols from the programming language. We denote this list

of programs by P0, P1, . . ., and the corresponding partial function on N computed by the eth

program by ϕe. Note that not all syntactically correct programs Pe will be robust, i.e., it is

possible that an algorithm gets “stuck” or loops infinitely for some inputs. Thus, for many

e ∈ N, it is the case that dom(ϕe) ( N.

We call the collection of all functions ϕe the partially computable functions; computable

functions are those with dom(ϕe) = N. A set A is computable if its characteristic function,

χA(x) =


1 x ∈ A

0 x 6∈ A

is computable.

A more general notion, and arguably the deepest and most important in the general

theory of computability, is that of relative computability. We say a set (or other countable

object, suitably coded into the natural numbers) A is computable relative to B (another set

or object) if, when we have free access to membership information about B, we are able to

compute A.

To formalize this, include among the basic commands of the acceptable programming

system fixed above, a command that allows a program to query an oracle set, O ⊆ N. (We

2A programming system is acceptable if it is universal, and satisfies a version of the Parameter Theorem.
For details, consult [16, 52].
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could use, for example,

If x ∈ O goto L1, else goto L2,

where L1 and L2 are labels of lines of the program.) Augmenting the language of the

programming system in this way leads to a different (but again, systematic) enumeration

of oracle programs, PO
0 , P

O
1 , . . .. Depending on which set of natural numbers is used as the

oracle set, the corresponding functions ϕOe vary. In this framework, a set A is computable

relative to B (we write A ≤T B and often say that A is Turing reducible to B) if there is an

index e so that ϕBe computes the characteristic function of the set A. Note that included in

this list of oracle programs are programs containing no oracle commands. In other words, the

collection of non-oracle programs described above are included in the list of oracle programs

no matter what oracle set is used. Thus for any set B, if A is computable, A ≤T B.

This reducibility is a pre-ordering3 on the power set of N. When A ≤T B and B ≤T A,

we say sets A and B are Turing equivalent and write A ≡T B (for example, for any set

A, A ≡T A, where A denotes the complement of A). The relation ≡T is an equivalence

relation on the power set of the natural numbers, and the equivalence classes are called

Turing degrees. The collection of Turing degrees under the ordering induced by ≤T forms an

upper-semilattice with a least element (the degree of the computable sets). We denote the

Turing degree of the computable sets by 0 and that of the halting set4, K = 0′ = {e | ϕe(e)
3A pre-ordering is a reflexive, transitive binary relation.
4The halting set is the jump of the empty set. In general, the jump of set A is

A′ = {e | ϕA
e (e) eventually halts}.

The inequality A ≤T A′ is proper.
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eventually halts}, by 0′.

Some sets, though they may not be computable themselves, may be enumerated by a

program. Formally, there is an e so that ϕe is total, and the range of ϕe is exactly the set.

These form the important class of computably enumerable (c.e.) sets. Provided the set is

infinite, we may assume, when it is convenient, that the enumerating function is 1-1. An

equivalent characterizing property for a c.e. set is that for some e, the set is exactly the

domain of ϕe. Post’s theorem asserts that a set is computable if and only if both it and its

complement are c.e. A Turing degree is called a computably enumerable or c.e. degree if it

contains a c.e. set.

Now, we give the definition that will facilitate consideration of computability theoretic

properties of structures. We will present only the most necessary and basic ideas. For a more

complete exposition, see, for example, [3] or [28]. All languages are assumed to be finite, and

because in the context of computability theory, finite structures are trivial, we will assume

all structures to be infinite.

A mathematical structure A is computable if its universe |A| is a computable set under

a suitable coding into the natural numbers (without loss of generality, we may assume it is

the natural numbers), and all basic operations and relations are computable5. Equivalently,

a structure is computable if we can write a computer program that given a quantifier-free

formula in the language of A, ψ(~x), as input, and any tuple of elements ~a (of appropriate

length) from |A|, will determine whether ψ(~a) holds or not. (In other words, the atomic dia-

gram of a computable structure is computable as a set, once suitably coded into the natural

5When the language is infinite, we require that the basic relations and functions are uniformly computable,
see [3] or [28].
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numbers.) For example, a linear ordering L = (L,<) is computable if L is a computable set,

and there is a computer program accepting any pair of elements, a and b, of L as input, that

outputs 1 (interpreted as “True”) if a ≤L b, and 0 (or “False”) otherwise.

An additional relation on a computable structure is one that is not a basic part of the

structure, i.e. it is not part of the language. (For example, if L = (N;<L) is a linear ordering,

the successor relation, SuccL, is an additional binary relation on L. This example is the topic

of Chapter 2.) Even when the underlying structure is computable, an additional relation may

not be computable. If the relation is definable in the first-order language of the structure,

the defining formula gives some upper bound on the algorithmic complexity of the relation.

Furthermore, the algorithmic properties of such a relation may change under isomorphism

to other computable copies of the structure. The algorithmic complexity of such a relation

therefore depends not necessarily on the isomorphism type, but on the copy of the structure

under consideration. For this reason, it is necessary to consider all isomorphic computable

copies of a structure, and the complexity of each respective instance of the relation, to gain

a complete understanding of the algorithmic properties of the relation itself.

For a given structure A and definable relation R, we consider the spectrum of Turing

degrees realized by the image of that relation in all computable copies of the structure. This

collection of Turing degrees is the degree spectrum6 of R in A,

DgSpA(RA) = {deg(f(R)) | f : A ∼= B, where B is computable}.

In the context of computability structure theory the following are two natural questions

6This definition was first presented in [32].
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that arise concerning ordered structures.

1. Given a computable ordered structure of some kind, how hard (computability theoret-

ically) is it to find some other relation of interest on that structure?

2. Given a computable structure of some kind, how hard is it to order its elements in a

way that is relevant to the structure?

In Chapter 2, we will consider the computability theoretic properties of a definable rela-

tion (the successor relation) in different computable copies of the same linear ordering.

In Chapter 3, we examine computable partial orderings (in particular, binary trees) hav-

ing in addition to the ordered structure a computable function of finite range. We call

these colored trees, and the function a coloring function. We will ascertain the algorithmic

complexity associated with extracting, in analogy with Ramsey’s Theorem, a homogeneous

substructure (in this case, a monochromatic embedded binary tree). This relation, “being

an element of the monochromatic subtree” is not definable, since there is more than one such

substructure that satisfies the criteria. We will give bounds on the complexity of the “sim-

plest” substructure guaranteed to exist and satisfy the description for a given computable

copy of the structure.

In Chapter 4, we consider the algorithmic complexity encountered in ordering the ele-

ments of computable groups and semigroups so that the ordering (as a binary relation) is

invariant under the group operation. Again, since such an ordering need not (indeed, it can-

not) be unique for a given group, a relation “x < y” satisfying the ordering criteria, is not

definable, but nonetheless, we can ask how difficult it might be to obtain such an ordering.
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We will give conditions ensuring that a group admits an ordering in every truth-table

degree7, discuss an interesting example, and consider the space of orderings for a group. We

will end the chapter by showing that the collection of bi-orderings of a computable semigroup

can be represented as the collection of paths in a computable tree.

7The truth-table degrees are a refinement of the Turing degrees and will be formally described in Chapter
4. Intuitively, two sets share the same truth-table degree if they encode the same information, and we can
obtain information about one from the other in an entirely robust way.
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Chapter 2

Linear orderings

2.1 Motivation

An infinite linear ordering L is computable just in case its domain is a computable set

(without loss of generality, we will assume it is always N), and <L is a computable relation.

Even in such a simple computable structure as this, much that we might like to know can

remain algorithmically inaccessible. For example, given x and y, is y the immediate successor

of x? Does x have a successor at all? Are there finitely many or infinitely many elements

between them? Is x a limit point in L? From the left or right or both? What is the

order-type of L?

The defining formulas (not all of them first-order) of these questions give some clue as to

how difficult it might be to answer them:

1. y is the immediate successor of x in L (we write SuccL(x, y)) if and only if

SuccL(x, y) ≡def x <L y ∧ ¬(∃z)[x <L z <L y].
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2. x has a successor in L if and only if ∃y Succ(x, y).

3. There are finitely many elements between x and y in L (we write BlockL(x, y)) if and

only if ∨
n∈ω

(∀z)[x <L z <L y =⇒ z <L n].

4. x is a limit point from the right in L if and only if

∃y [y >L x ∧ ∀y ¬Succ(x, y)].

5. L has order-type α if and only if (∃f)[f : α ∼= L].

Intuitively, each existential first order quantifier requires a search through the universe

of L to find an element satisfying some property, and ascertaining non-existence requires an

infinite, exhaustive, failed search. Each universal quantifier requires an exhaustive checking

that a property holds for every element. The infinite disjunction in (3) behaves similarly to

an existential quantifier in practice (once all is translated into the language of arithmetic). In

(5), there is a second-order quantifier, which requires a more complicated kind of algorithm.

In some instances, the desired property may be easy to check. For example, if LQ is

a computable copy of the rational numbers, SuccLQ(x, y) is the constant function 0 (for

“False”), as is BlockLQ . If Lω is the natural numbers in their usual ordering, we can write a

program to compute the successor relation:

Given x and y,

if y = x+ 1 then output 1,
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otherwise, output 0.

Thus, the defining formula does not give an exact description of the algorithmic complexity

of a relation in all instances, it only provides an upper bound.

This chapter is concerned with the algorithmic complexity of the successor relation in

computable linear orderings, which has been of interest in computability theory for some

years. In the early 1980’s Remmel [45] discovered that a necessary and sufficient condition

for a computable linear ordering to be computably categorical1 is that the successor relation

is finite (the result follows from independent work of Dzgoev and Goncharov [23]). For these

linear orderings, DgSpL(SuccL) = {0} since a finite set is always computable. This result

paralleled another theorem of Remmel [44] ensuring computable categoricity of computable

Boolean algebras when the Atom relation is finite. (An element of a Boolean algebra is an

atom if it is not the least element and there is no element properly between it and the least

one.)

The connection between Atom and Succ is a strong one, and is established via the interval

algebra of a given linear ordering. If L is a linear ordering, then the Boolean algebra generated

by the half-open intervals of L has an atom corresponding to each successor pair in L: If

SuccL(a, b) holds, then [a, b) is a singleton, so non-trivial and an atom in the corresponding

interval algebra. If L is computable so is the induced interval algebra, so it is natural to

imagine that Atom and Succ might exhibit similar algorithmic properties, and indeed in

many respects they do. It is thus worth noting that this is not always the case: Downey

and Moses [22] gave a construction of a linear ordering having the property that the degree

1A computable structure A is computably categorical if there is always a computable isomorphism between
computable copies of A.
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spectrum of the successor relation is exactly {0′}, in contrast to another of Downey’s results,

that every computable Boolean algebra has a computable copy, B, with AtomB � 0′.

In a study of relations on Boolean algebras [17], Downey, Goncharov, and Hirschfeldt

asked about the structure of the degree spectrum of the successor relation in linear orderings

(assuming it is not finite), specifically, they asked whether the spectrum can be a single

degree other than the computable or complete degree. Remmel showed in [44] that the

degree spectrum for the atom relation in a computable Boolean algebra is closed upward

in the c.e. degrees, provided the relation is infinite. So it is natural to ask if the same is

the case for the successor relation. If this is the case, then, of course, the answer to the

question of Downey, Goncharov, and Hirschfeldt is no. The main results in this chapter

make substantial progress toward answering this question. We will see that for a large class

of linear orderings, the degree spectrum of successor is closed upward in the c.e. degrees, and

will classify by order type those linear orderings for which the question remains open.

2.2 The successor relation

We begin with an example illustrating an important fact mentioned in the previous section.

Namely, the isomorphism type of a computable structure does not specifically determine

the algorithmic properties of additional relations. In both examples described above (when

Succ was finite, and in the example due to Downey and Moses), the isomorphism type of the

linear ordering does exactly determine the algorithmic properties of the successor relation.

In the example below, this is not the case.

We denote the natural numbers in their usual order by Lω = (N, <). Of course, in the
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usual copy of this structure the successor relation is computable. There are isomorphic linear

orderings, though, in which the successor relation is highly non-computable. In fact, it can

be arranged that the relation has any c.e. degree:

Example 2.2.1. Let A be any infinite computably enumerable set, and {a0, a1, a2, . . . }

be a one-to-one computable enumeration of its elements. We construct a computable linear

ordering LA isomorphic to Lω in which the successor relation is exactly as difficult to compute

as the set A itself. The universe of LA will be N, and the order relation will be computable.

Construction.

Stage 0. Begin with a skeleton, ordering just the even numbers:

0 <LA 2 <LA 4 <LA 6 <LA . . .

Stage s+ 1. If as = n, insert 2s+ 1 between 2n and 2n+ 2:

2n <LA 2s+ 1 <LA 2n+ 2

This ends the construction.

Because A is infinite, all odd numbers are eventually placed so the universe is N. Fur-

thermore, since at most one odd number is inserted between any pair of consecutive even

numbers, it is easy to see that the ordering will be isomorphic to Lω. To determine if

x <LA y, we can check in cases: If both x and y are even, we use the usual order. If one is

odd, say y, then the relation holds only if (y − 1)/2 is not one of the first x/2− 1 elements

in the (computable) enumeration of A. The remaining cases are similar, and the basic order
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relation is thus computable.

It remains to assess the complexity of the successor relation.

SuccLA(x, y) holds exactly when

1. both x and y are even and x/2 never appears in the enumeration of A,

2. x is even, y is odd, and x/2 is a(y−1)/2, or

3. x is odd, y is even, and (y − 2)/2 is a(x−1)/2.

The first case is the only one that is not simply computable (because this is where the coding

happened). If we know exactly which numbers are in A, we will know if x/2 will ever appear

in its enumeration. Thus, SuccLA ≤T A.

For the other reduction, note that n ∈ A if and only if ¬SuccLA(2n, 2n + 2), and so

A ≤T SuccLA ≡T SuccLA . We conclude that the relation and the set have the same Turing

degree.

The example above shows that given any c.e. set, we can construct a computable linear

ordering of type ω where the successor relation is exactly as complicated as that set. In fact,

this exhausts the possibilities for the complexity of the successor relation in a computable

linear ordering in the following sense.

Considering the defining formula for the successor relation, we can easily imagine a

program having as its domain exactly the complement of SuccL, provided that the linear

ordering L is computable:

Input x and y.

If y ≤L x, halt and output 1.

13



If x <L y search for n properly <L-between x and y.

If such an n is found, halt, output 1.

(If no such n exists, the algorithm will search forever.)

Note that this program halts if and only if ¬Succ(x, y). We see from this that the Turing

degree of the successor relation of any computable linear ordering is always a c.e. degree.

Example 2.2.1 shows that every c.e. Turing degree contains a set that codes the successor

relation in a computable linear order of type ω.

We now turn to the question of whether the Turing degree spectrum of the successor

relation in linear orderings is closed upward in the c.e. Turing degrees (provided that it is

infinite).

2.3 Upwards closure of DgSpL(SuccL) in the c.e. degrees

The following theorem (our main result in this chapter) shows that for a large class of linear

orderings, the degree spectrum of the successor relation is closed upward in the c.e. degrees.

Later, we will see a characterization of those linear orderings for which the question remains

open. We will also establish that every upper cone of c.e. Turing degrees may be realized as

the degree spectrum of the successor relation in some computable linear ordering.

Theorem 2.3.1 ([9]). Let L be a computable linear ordering with domain N such that

(U) For every x ∈ N there are a, b ∈ N with SuccL(a, b) and x <L a.

Let A be a c.e. set so that SuccL ≤T A. Then there exists a computable linear ordering

M∼= L with SuccM ≡T A.
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Proof. Let the computable linear ordering L and c.e. set A satisfy the hypotheses of the

theorem. Without loss of generality, we assume A is infinite.

We construct the computable linear orderingM in stages, with |M| = N so thatM∼= L.

Our aim is to code the set A into the complement of SuccM, as was done in Example 2.2.1.

Our construction is complicated by the fact that we do not know a priori the order type of

L, as we did in the example.

At each stage s of the construction we will specify the linear ordering <M on {0, . . . , s},

uniquely determining a partial isomorphism fs : {0, . . . , s} → {0, . . . , s} from L to M. In

other words, for all i < j ≤ s, i <L j holds in L if and only if fs(i) <M fs(j) holds in M.

To simplify our exposition, we introduce the following scheme for representing the ele-

ments of L and M under consideration at stage s. Let ls0, . . . , l
s
s be the elements of the set

{0, . . . , s} in increasing <L-order, and rs0, . . . , r
s
s be the elements of {0, . . . , s} in increasing

<M-order. Thus for all j ≤ s, we have fs(l
s
j) = rsj . It will also be convenient to take

ls−1 <L x <L l
s
0 and lss <L x <L l

s
s+1 to simply mean x <L l

s
0 and lss <L x, respectively.

As explained above, the complement of the successor relation of L,

SuccL = {(x, y) | x 6<L y ∨ ∃u(x <L u <L y)},

is a c.e. set. We define a computable approximation of SuccL by finite sets, {Cs}s∈ω, as

follows:

Cs = {〈x, y〉 | (x, y ≤ s) ∧ (x 6<L y ∨ (∃u ≤ s)[x <L u <L y])},

where 〈·, ·〉 is a fixed computable pairing bijection2.

2For example, we may take 〈n, m〉 = 2n(2m + 1)− 1, which is a computable bijection from N× N to N.
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The complement of these finite sets gives, for each s, an infinite computable collection

of coded pairs 〈x, y〉 ∈ Cs approximating the set of successor pairs of L at stage s. Let

{cs0 < cs1 < . . . } be an enumeration of elements of Cs in the usual order of magnitude, and

cn = lims c
s
n (observe that this limit, of course, exists). The collection {cn}n∈ω of these limit

values is an enumeration of all the successor pairs of L.

Now recursively define the following family of computable functions. Let

gs(0, 0) = cs0, and

gs(e, d) = min{csn = 〈a, b〉 | (∀〈e′, d′〉 < 〈e, d〉)[gs(e′, d′) < csn] ∧ d <L a}.

For each n, csn converges to cn, and L satisfies condition (U) so it is clear that for all e and

d, the limit, g(e, d) = lims gs(e, d) exists. It will be equal to the least coded successor pair

cn = 〈a, b〉 such that for all 〈e′, d′〉 < 〈e, d〉 we have g(e′, d′) < cn and d <L a. If we consider

the collection of successor pairs coded by g(e, ·) for a fixed e, we see that it contains pairs

with arbitrarily large (with respect to <L) first coordinates. So for each e, g(e, ·) generates a

unique sequence of successor pairs witnessing that (U) holds of L. These sequences of codes

of ordered pairs are pairwise disjoint.

For the arbitrarily selected infinite c.e. set A, let {As}s∈ω be a computable sequence of

finite sets such that As ⊆ As+1 and A = ∪sAs. The construction aims to satisfy two types

of requirements.

The first type of requirement serves to ensure that the set A is coded into the complement

of SuccM. These are met by arranging a pair of witnesses for each e ∈ N, ae and be, so that

e ∈ A if and only if (ae, be) is not a successor pair ofM. The witnesses will be approximated

16



at each stage, and in the end we will have ae = lims a
e
s and be = lims b

e
s.

Natural number e is coded in M at stage s if and only if aes <M bes and either

1. e 6∈ As and there is no x ≤ s so that aes <M x <M bes (in other words, (aes, b
e
s) appears

to be a successor pair at this stage), or

2. e ∈ As and there is an x ≤ s so that aes <M x <M bes.

If no such pair of witnesses aes and bes exists at this stage, e is not coded in M at stage s. An

e ∈ N may be coded in M at stage s and not coded at some s′ > s. We will see that this

decoding can only happen at only finitely many stages, and that eventually e remains coded

in M via the same fixed pair ae and be.

The second type of requirement will guarantee that f = lims fs exists and is an isomor-

phism from L toM. To meet these, a restraint function, r(e, s), defined in the construction

ensures fs and the collection of successor pairs do not change on elements <L r(e, s) as a

result of action taken to code e′ > e into M.

Construction.

Stage 0. Let |M| = {0}, <M= ∅, and f0(0) = 0. For all e, initialize r(e, 0) = e, and set

ae0 = be0 = −1 so that e is not coded in M at stage 0.

Stage s+ 1. We begin this stage with ({0, . . . , s}, <M) and fs from the previous stage.

Our first action will be to define ({0, . . . , s+ 1}, <M), extending the ordering defined in

stage s. Simultaneously, we define fs+1, which need not be an extension of fs. The next task

will be to update the values aes+1, b
e
s+1, and r(e, s+ 1) to the current stage for all e ∈ N.
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Find the least e ≤ s that is not coded inM at stage s for which there is a d ≤ s satisfying

the following conditions:

• gs+1(e, d) = 〈lsi , lsi+1〉 for some i+ 1 < s,

• r(e, s) <L lsi ,

• r(e, s) <L s+ 1, and

• e is not coded in at stage s.

If there is such an e, take the least suitable d (and the corresponding i).

Now define ({0, . . . , s+ 1}, <M) and fs+1 in two cases.

Case 1. There are three instances of this case:

(i) there is no such e, or

(ii) there is such an e /∈ As+1, or

(iii) there is such an e ∈ As+1, and aes = −1.

If any of the above holds and lsm <L s+1 <L l
s
m+1, declare rsm <M s+1 <M rsm+1.

Note that if (ii) or (iii) holds, m 6= i because for some n, gs+1(e, d) = cs+1
n =

〈lsi , lsi+1〉, and so this pair is not in Cs+1. Since both lsi ≤ s and lsi+1 ≤ s, it must

be that there is no u ≤ s + 1 between them; in particular, s + 1 is not between

them.

Let fs+1 be the unique isomorphism between ({0, . . . , s+1}, <L) and ({0, . . . , s+1}, <M).

(That is, fs+1(s+ 1) = s+ 1 and fs+1(x) = fs(x) for all x ≤ s.)
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Case 2. If there is such an e ∈ As+1 (satisfying the bulleted conditions above), and aes 6= −1.

Let aes <M s+ 1 <M bes. (In this case, the construction will ensure that

r(e, s) <L f
−1
s (aes). More on this below.)

Let fs+1 be the unique isomorphism between ({0, . . . , s+1}, <L) and ({0, . . . , s+1}, <M).

(Hence fs+1(x) = fs(x) for all x ≤L r(e, s), since r(e, s) <L s+ 1 and

r(e, s) <L f
−1
s (aes).)

Now, we can define ae
′
s+1 and be

′
s+1 for all e′ ∈ N as follows:

1. If no e satisfied the conditions, set ae
′
s+1 = ae

′
s and be

′
s+1 = be

′
s for all e′ ∈ N.

2. If there was an e that satisfied the conditions, let ae
′
s+1 = ae

′
s and be

′
s+1 = be

′
s for all

e′ < e. For e′ > e, set ae
′
s+1 = be

′
s+1 = −1. (It is this detaching of markers that ensures

that the parenthetical remarks in Case 2 above hold.)

For e itself, recall that gs+1(e, d) = (lsi , l
s
i+1) for some i+ 1 < s, and make the following

assignments:

(a) If e /∈ As+1, set aes+1 = rsi and bes+1 = rsi+1;

(b) If e ∈ As+1 and aes = −1, let aes+1 = rsi and bes+1 = rsi+2;

(c) If e ∈ As+1 and aes 6= −1, let aes+1 = aes and bes+1 = bes.

All that remains is to update the restraint function. For all e′ ∈ N, we let r(e′, s+ 1) be

the <L-maximal element of

{0, . . . , e′} ∪ {f−1
s+1(i) | i ≤ e′} ∪ {f−1

s+1(a
x
s+1), f

−1
s+1(b

x
s+1) | x < e′ ∧ axs+1 6= −1}.
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This completes the construction.

Because the relative positions of elements of M never change, M = (N, <M) is a com-

putable linear ordering.

Remark 2.3.2. It is easy to see that if action is taken to code e into M at stage s+ 1, then

fs+1(x) = fs(x) for every x ≤L r(e, s), and if no coding takes place at this stage, this is true

for all x ≤ s. We also note here that r(e, s) is increasing in e for each s.

We now give (and establish some basic facts about) a function s : N → N, that will be

used in the lemmas that follow. Inductively define the function s(e) to be the least s so that

s ≥ max({s(e′) | e′ < e}) and e is coded into M for all stages s′ ≥ s. The maximum of the

empty set is taken to be zero.

Lemma 2.3.3. The function s exists and s ≤T A.

Proof. Inductively assume that s(e′) exists for e′ < e, and that it can be computed from A.

Let se = max{s(e′) | e′ < e}. By hypothesis, all e′ < e are coded in at stage se and at all

subsequent stages. Thus, ae
′
= lims a

e′
s = ae

′
se and be

′
= lims b

e′
s = be

′
se , so r(e) = lims r(e, s) =

r(e, se) as a consequence of Remark 2.3.2 and the definition of r(e, s). At se, e is not coded

in M. Both aese and bese have been reset to −1. (It follows from the definition of s that se

will be the stage where e− 1 gets coded into M for the last time.)

Suppose e ∈ A. Let s1 ≥ se be the least s so that e ∈ As. Let s2 ≥ s1 be the least stage

so that there is a d ≤ s2 with gs2+1(e, d) = 〈ls2i , l
s2
i+1〉 where i+ 1 < s2, r(e, s2) = r(e) <L l

s2
i ,

and r(e) <L s2 + 1. Because L satisfies condition (U), and the function gs converges to true

successor pairs of L, s2 must exist. We have s(e) = s2 + 1.
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If e 6∈ A, let s1 ≥ se be the least stage so that there is a d ≤ s1 with gs1+1(e, d) = g(e, d) =

〈a, b〉 with a, b ≤ s1, and b <L l
s1
s1

, and r(e) <L a. Then if there is a stage s ≥ s1 at which e

is not coded in M, it will be coded in at the first stage t > s having r(e) <L t, which must

occur since L satisfies condition (U). Clearly, it will remain coded in M at all subsequent

stages. Thus, s(e) exists.

We proceed to compute s(e) from A for e 6∈ A. Recall that SuccL ≤T A. Using SuccL we

can find stage s1 described above. If e is not coded in M at this stage, find the least t > s1

having r(e) <L t. Then s(e) = t.

If e is coded in at s1, find the stage s, se < s ≤ s1, where it became coded in M. If

(f−1
s1

(aes1), f
−1
s1

(bes1)) ∈ SuccL ≤T A, then s(e) = s. Otherwise, there must be some element,

n, <L-between f−1
s1

(aes1) and f−1
s1

(bes1), and necessarily n > s1. At stage n, this e will become

not coded in M. (The restraints r(e′, s) for all e′ ≥ e <L-exceeds n, so at this stage the

construction will be in Case 1.) Find the least stage t > n with r(e) <L t, and we will have

s(e) = t.

Thus we see that s is well-defined and that it may be computed from A, since A computes

SuccL by assumption.

In many ways, s acts as a modulus of convergence. We now exploit this property to show

that the partial functions, fs, do indeed converge to a limit that is an isomorphism. The

relative complexity of the isomorphism is also established.

Lemma 2.3.4. The limit, f = lims fs, exists and is an isomorphism from L to M. Fur-

thermore, f ≤T s.
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Proof. From Lemma 2.3.3 and Remark 2.3.2 it follows that for all s′ ≥ s(e), we will have

fs′(e) = fs(e)(e) and f−1
s′ (e) = f−1

s(e)(e), since e ≤L r(e, s′) = r(e) and f−1
s′ (e) ≤L r(e).

Therefore, lims fs(e) and lims f
−1
s (e) exists for all e ∈ N, and f ≤T s.

Since fs is an isomorphism from ({0, . . . , s}, <L) onto ({0, . . . , s}, <M) and converges, its

limit, f = lims fs, is also an isomorphism from L onto M.

Finally, we are able to complete the proof of the theorem by showing that SuccM has

the same Turing degree as the set A.

Lemma 2.3.5. SuccM ≡T A.

Proof. We begin by establishing the reduction SuccM ≤T A. From Lemma 2.3.3 we have

that s ≤T A. From Lemma 2.3.4, we have f ≤T s. Clearly SuccM ≤T f ⊕ SuccL, and since

each of f and SuccL is Turing reducible to A, we see that SuccM ≤T A as well.

To see that A can be computed from SuccM, we show that SuccM computes s. Then,

recalling our original coding strategy and properties of s, i.e.,

e ∈ A⇐⇒ (aes(e), b
e
s(e)) /∈ SuccM,

we can finish the proof by observing that

A ≤T SuccM ⊕ s ≤T SuccM.

It remains only to prove that s can be computed from SuccM. For some e ∈ N, inductively

assume SuccM computes se = max{s(e′)|e′ < e}. Simultaneously attempt to compute sein
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and seout, defined to be

sein ≡def the least s > se such that e ∈ As, r(e) <L s+ 1, and

(∃d ≤ s)[gs+1(e, d) = 〈lsi , lsi+1〉 ∧ (r(e) <L l
s
i ) ∧ (i+ 1 < s)]; and

seout ≡def the least s > se such that (aes, b
e
s) ∈ SuccM.

If sein exists, s(e) ≤ sein, and we can calculate s(e) since we have this upper bound. In this

case, of course, e ∈ A. If seout exists, s(e) = seout and e 6∈ A. Because s(e) exists by Lemma

2.3.3, this search must halt. So using oracle SuccM we can recursively compute the function

s(e), thus s ≤T SuccM, and the proof of the lemma is complete.

This completes the proof of the theorem.

The result in Theorem 2.3.1 applies to a somewhat broader class of linear orderings than

just those satisfying condition (U). First, for any linear ordering L, the degree spectrum

of the successor relation in L will be identical to that of the reverse ordering, L∗. So a

descending sequence of successor pairs satisfying a symmetric condition (U∗) is similarly

sufficient.

Additionally, suppose that L is a computable linear ordering in which (U) does not

hold. Then L may be decomposed as L = L2 + L1, where L1 has order type 1 or 1 + η.

The ordering L2 is an initial segment of L and is computable since it is definable with

a quantifier-free formula with finitely many parameters (in fact, a single parameter suf-
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fices). Its successor relation is at most finitely different from that of L. Consequently,

DgSpL(SuccL) = DgSpL2(SuccL2), and if L2 satisfies (U), DgSpL(SuccL) will be closed

upward in the c.e. degrees.

This process may be iterated any finite number of times to obtain a computable ini-

tial segment M of L with DgSpL(SuccL) = DgSpM(SuccM). If M satisfies (U), then

DgSpM(SuccM), and hence DgSpL(SuccL), will be closed upward in the c.e. degrees.

If this decomposition process continues ad infinitum, we cannot apply Theorem 2.3.1. We

characterize these types of linear orderings (R1, R2, R3, and R4) in the following corollary.

Corollary 2.3.6 ([9]). Let M be a computable linear ordering with infinitely many successor

pairs. If M is not of the form Ri for 1 ≤ i ≤ 4, where Ri is given below, then DgSpM(SuccM)

is closed upward in the c.e. degrees.

R1 = F1 + ω +R + ω∗ + F2,

R2 = n0 + η + n1 + η + · · ·+R + ω∗ + F2,

R3 = F1 + ω +R + · · ·+ η + n′1 + η + n′0,

R4 = n0 + η + n1 + η + · · ·+R + · · ·+ η + n′1 + η + n′0,

where F1 and F2 are arbitrary (possibly empty) linear orderings with finitely many suc-

cessor pairs, ni, n
′
i ≥ 1 are finite blocks of the respective size, and R may be any countable

linear ordering.

Proof. Let L be a computable linear ordering for which (U) does not hold, and that L

cannot be decomposed via finitely many iterations of the process described above to a sum

L =M+ Ln + . . .+ L1 where M is a computable initial segment of L satisfying (U).
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We decompose L as described above to obtain

L = R + . . .+ Ln + . . .+ L2 + L1,

where each Li is of type 1 or 1 + η.

Case 1. If for some k, and all i > k, Li is of type 1, then R+ . . .+Ln + . . .+Lk+1 is of type

R+ ω∗. The remaining part of the decomposition, F = Lk +Lk−1 + . . .+L2 +L1 is a finite

sum of orderings of type 1 or 1 + η, and thus F can have only finitely many successor pairs.

In this case, we have

L = R + ω∗ + F,

where F is a linear ordering having finitely many successor pairs.

Case 2. If Case 1 does not hold, then for each k, there is j > k so that Lj is of type

1 + η. Hence, at most finitely many blocks of type 1 may appear consecutively. If n such

blocks appear, they may be represented as a single block, n. In this case, we have

L = R + . . .+ η + n1 + η + n0,

where the ni’s are appropriate finite blocks.

Recalling that for any linear ordering L, DgSpL(SuccL) = DgSpL∗(SuccL∗), we arrive at

the four decompositions above.

We end the section with a nice consequence (Theorem 2.3.8) of Theorems 2.3.1 and 2.3.7

(the latter below). Earlier in this chapter, we mentioned an example of a linear ordering in
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which the successor relation has degree 0′ in every computable copy [22]. Its existence is a

consequence of the following theorem.

Theorem 2.3.7 ([22]). For any non-computable c.e. set C, there is a computable linear

ordering L such that SuccL ≡T C and C ≤T SuccL′ for every computable linear ordering

L′ ∼= L. Furthermore, L has the form

L = I0 + L0 + I1 + L1 + . . . ,

where each Ii is a block of length i+ 3 and Li has order type η or (η+ 2 + η) · τ for some τ .

In Theorem 2.3.7, the witnessing computable linear ordering L is constructed so that

DgSpL(SuccL) ⊆ R(≥ deg(C)), where R(≥ deg(C)) is the collection of all c.e. Turing

degrees ≥ deg(C). Because of their form, the orderings satisfy the condition (U) in Theorem

2.3.1, and we have the following.

Theorem 2.3.8 ([9]). For any c.e. degree a, there is a linear ordering L so that the de-

gree spectrum of SuccL is exactly the upper cone of c.e degrees determined by a, that is,

DgSpL(SuccL) = R(≥ a).

Proof. If a is computable then the result follows from Example 2.2.1. Let a be a non-

computable c.e. degree. Theorem 2.3.7 yields a linear ordering L with deg(SuccL) = a that

satisfies condition (U) of Theorem 2.3.1, and ensures that DgSpL(SuccL) is contained in the

cone above SuccL. Theorem 2.3.1 says that DgSpL(SuccL) contains that cone.

Thus, every upper cone of c.e. degrees can be realized as the degree spectrum of the

successor relation in the computable copies of some linear ordering.
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2.4 Concluding remarks and proposed problems

Research continues in the study of the degree spectrum of the successor relation. Downey,

Lempp, and Wu [18] have recently shown that, provided the successor relation is infinite,

the degree spectrum of successor always contains 0′.

Many questions remain in the path to a complete understanding of these spectra and the

possibilities surrounding them. For example,

1. When the spectrum is closed upwards, is it necessarily a cone? A filter?

2. If not, what is possible? Can, for example, the spectrum be the union of finitely many

cones with incomparable roots?
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Chapter 3

Colored trees

3.1 Motivation, and some basic definitions and facts

In this chapter, we will analyze the algorithmic complexity of a version of Ramsey’s theorem

adapted to trees.

For a set of natural numbers A, let [A]n be the collection of (unordered) n-element subsets

of A. Recall that Ramsey’s theorem for a fixed n and k is the following.

Theorem 3.1.1 (RT nk ). For any f : [N]n → {0, . . . , k − 1} there exists an infinite subset

A ⊆ N so that f � [A]n is constant.

The set A is a monochromatic or homogeneous subset for the coloring function f . In 1971,

Specker [58] demonstrated that the effective version of Ramsey’s theorem does not hold, i.e.,

that there are computable colorings for which there exist no monochromatic subset. In 1972,

Carl Jockusch ([36]) considered the complexity of the monochromatic subset and described

the difficulty involved in extracting such a set when the coloring function is computable in

28



terms of the arithmetical hierarchy of sets. He showed that if a coloring function f of n-

element subsets of N is a computable one, then there is a Π0
n subset of the natural numbers,

A, so that [A]n is monochromatic for f . He thus gives an upper bound on the complexity

of the requisite homogeneous subset. Furthermore, for n ≥ 2, Jockusch gives a construction

of a computable coloring of n-element sets for which there is no Σ0
n monochromatic subset,

thus demonstrating that the bound is sharp.

Subsequently, a great deal of work has been done in attempts to assess the relative ax-

iomatic content of a variety of combinatorial theorems in the program of reverse mathematics

established by Friedman and Simpson [50]. Certain instances and formulations of Ramsey’s

theorem have been unyielding to analysis in terms of the usual hierarchy of systems of arith-

metic (the Big Five) studied in this program (see, for example, [8]). In particular, exact

description of the axiomatic content of Ramsey’s theorem for n = 2 remains elusive. The

full version of Ramsey’s theorem, “For all n and all k, RT nk holds,” is known to be equivalent

(over RCA0) to ACA0 plus the statement that for any set A and natural number n, the nth

jump of A, A(n), exists [50]. (This is true in the usual model of ACA0, but not provable.

These axiom systems will be described in Section 3.3.)

The computable content, and especially the reverse mathematics, of classical combinato-

rial theorems, and their adaptations have been extensively studied, for example [10, 1, 7, 8,

33, 34, 35, 36, 48]. Trees are common structures that are relevant throughout mathematics,

and adaptations of Ramsey’s theorem to trees have been introduced in other contexts, for

example, in [24, 40, 59].

Here we consider an adaptation of Ramsey’s theorem to trees that may lead to insight into

the reverse mathematics of Ramsey’s theorem itself. In particular, we assess the algorithmic
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complexity of the requisite homogeneous substructure in terms of the arithmetical hierarchy

of sets. As we have already mentioned, a number of tree versions of Ramsey’s theorem

appear in the literature (see, for example, [24], [40], or [59]), and from some of them may be

derived a restricted version of Theorem 3.2.1 with n fixed as 1. Furthermore, in those cases

a more restrictive definition of isomorphism is used.

3.2 Notation and basic observations

Let T be a partial ordering. We denote by [T ]n the collection of chains of length n (n-chains)

in T . (Note that [T ]1 = T .) The collection of all finite strings of 0’s and 1’s is 2<ω and for

the usual tree partial ordering of this set by initial segments we write <. (In other words,

for strings σ and τ , we write σ < τ if σ is an initial segment of τ .)

A (k, n)-colored binary tree T is a partial ordering of |T | ⊂ ω together with function

f : [T ]n → {0, . . . , k} and bijection g : |T | → 2<ω satisfying

x <T y ⇐⇒ g(x) < g(y).

Such a tree is computable if |T | is a computable set, and f and g are computable functions.

The function f gives a coloring of the n-chains by finitely many colors.

A tree S is a subtree of tree T isomorphic to 2<ω if |S| ⊆ |T | and

1. S has a least element under the ordering induced by T , and

2. each element of S has exactly two immediate successors under the induced ordering.

If a subtree of T is the collection of all nodes above some given node τ , we call it the full
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subtree above τ .

Without loss of generality, when a tree is computable we assume it is the full binary tree,

2<ω. Subtrees of such a tree will be identified with the corresponding subset of nodes and

induced ordering. A subtree of a colored tree is monochromatic for f if the coloring function

f is constant on the subset of nodes.

Now we may state the adaptation of Ramsey’s theorem to trees that we will consider

below.

Theorem 3.2.1 ([10]). (TT nk ) Let f : [2<ω]n → {0, . . . , k − 1} be a (k, n)-coloring of the

binary tree. Then there exists a subtree S of 2<ω that is isomorphic to the full binary tree,

so that f � [S]n is constant. In other words, S is a monochromatic subtree for f .

Later we will consider the algorithmic complexity of the subtree, and will make this

assessment in terms of the arithmetical hierarchy of sets. Recall that a set of natural numbers

is Σ0
n (Π0

n) if it is definable in the language of first order arithmetic by a formula having n

alternating quantifier blocks beginning with ∃ (∀). A set that is computable in 0(n) is in the

intersection of Σ0
n and Π0

n, and is called a ∆0
n set. A set that is Σ0

n+1 is enumerable in 0(n).

(See [52] for details.)

First, we will see some properties of this theorem from the perspective of reverse mathe-

matics.

3.3 Reverse Mathematics

Broadly, the goal of the program of reverse mathematics is to assess the axiomatic content

of theorems (expressed in the language of second order arithmetic) relative to a weak base
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system (RCA0) by showing equivalence to one of a number of standard axioms or axiom

schemes that may be added to RCA0 to obtain a larger fragment of the full second order

arithmetic. Since we are working in second order arithmetic, our language is two-sorted,

with variables for both natural numbers, and sets of natural numbers.

The system, RCA0, (the acronym RCA is an abbreviation for recursive comprehension

axiom) has a first order part described by the same collection of axioms as Peano Arithmetic,

except that it lacks full induction. In RCA0, induction is limited and holds only for Σ0
1

formulas. In addition, there is a second order comprehension scheme for ∆0
1 formulas (this

scheme asserts that all computable sets exist in any model of RCA0). If a theorem is provable

in RCA0, then an effective version of that theorem holds. This is a consequence of the fact

that there is a minimal ω-model of RCA0, and it is our usual arithmetic, except that only

the computable sets provably exist.

The system ACA0 (for arithmetical comprehension axiom) consists of the axioms of

RCA0 together with a comprehension scheme for sets definable by arithmetical formulas

(i.e., by a Σ0
n formula for some n). ACA0 also has a minimal ω-model, one consisting of only

the arithmetical sets. When a theorem ψ is provable in ACA0, and at the same time, the

theorem ψ together with the axioms of RCA0 prove the existence of arithmetical sets (i.e.,

prove arithmetical comprehension itself), then, in light of such a reversal, we can say that ψ

is equivalent to ACA0 over RCA0. When this is the case, we can conclude that no effective

version of ψ can hold, since a model necessarily contains non-computable sets.

In the case of Ramsey’s theorem for n = 1 (the pigeonhole principle for infinite sets),

it is a simple matter to compute the subset of N on which a computable coloring function

takes a particular value. Determining which component of the partition is infinite is a more
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complicated question. In our case, we are searching not only an infinite component of the

coloring partition, but one exhibiting a particular structure—a binary subtree.

We begin with a basic case for n = 1 and k = 2.

Lemma 3.3.1 ([10]). (RCA0) Let f : 2<ω → {red, blue} be a (2, 1)-coloring of the full binary

tree. For any node σ of the tree either, (1) there is subtree isomorphic to 2<ω with root above

σ and in which every node (except possibly the root) is colored red, or (2) there is a τ = σ

so that every node above τ is colored blue by f (i.e., a full subtree above some τ).

Proof. Given f and σ, we may make a systematic search for a subtree, S.

Construction.

Stage 0. Find the least node τ〈〉 w σ for which f(τ〈〉) = red. Add this node to S.

Stage s+1. For each node τα of length s already in S, find the least pair of incomparable

nodes above τ that are both colored red. Call these τα_0 and τα_1, and add them to S.

This ends the construction.

If the search ever fails, we have found a full blue subtree and realized (2) in the statement

of the Lemma. If it succeeds, we have a subcollection of nodes, all colored red by f , and the

indices of the markers assigned to them provide the isomorphism to 2<ω.

Note that if f is computable, the given algorithm is computable in 0′. (We would need

0′ to tell us that the “least incomparable extensions” that we might be looking for do not

exist.)

We will refer to the red subtree constructed in Lemma 3.3.1 (when it exists) as the

standard red subtree for f above σ. For any node σ the collection of all nodes extending it is

the full subtree above σ.
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As commented in the proof, 0′ is a sufficiently strong oracle to execute this construction

when f is computable. We will see below that for the case when n = 1 there is always

a computable monochromatic tree, though it is not calculable in a uniform way. In the

instance where the search in the proof of Lemma 3.3.1 fails, there is a τ w σ for which all

extending nodes are colored blue, so this monochromatic subtree, Tτ is computable. If the

algorithm never encounters a full blue subtree, the search succeeds, and a red subtree will be

enumerated. We can do better if we are willing to sacrifice uniformity.

Theorem 3.3.2. If f : 2<ω → {red, blue} is a computable (2, 1)-coloring for which there

exist no full (so necessarily computable) monochromatic subtrees, then there is a computable

(but not full) monochromatic subtree for f that is isomorphic to the full binary tree.

Proof. If there is no full monochromatic subtree of any color, then for any τ there must exist

an incomparable pair of red (and blue, for that matter) nodes extending it. We enumerate

the monochromatic subtree S in the following algorithm, ensuring it is isomorphic to 2<ω.

Construction.

Stage 0. Attach the name σ〈〉 to the least node colored red by f .

Stage s+1. We begin this stage with a collection of leaves, στ for all τ ∈ 2s. For each στ

find the least pair of incomparable red nodes extending στ and attach names στ_0 and στ_1

to them. (Note that this systematic search is guaranteed to halt by the observation made

just before the beginning of the construction.)

Let S = {στ | τ ∈ 2<ω}.

This ends the construction.

The indices provide the isomorphism, and S is clearly c.e. To see that S is computable,
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note that we can determine if node α ∈ 2<ω is an element of S by executing the construction

above for |α| steps, where |α| denotes the length of the node. If α is not in S at that stage,

it will never enter.

These computable subtrees exist when the coloring function is computable and the proof

requires only Σ0
1 induction, so they exist in RCA0. Thus Lemma 3.3.1 holds in RCA0.

We now generalize from two to k colors. The proof uses induction on Σ0
2 formulas, and

consequently, the statement of the theorem refers to RCA0 + Σ0
2-IND.

Theorem 3.3.3 ([10]). (RCA0 + Σ0
2-IND) Let f : 2<ω → {0, . . . k − 1}. Then there is

subtree S that is isomorphic to 2<ω and monochromatic for f .

Proof. Define a set of colors C = {j | (∃σ)(∀τ = σ)[j ≤ f(τ)]}. This set is non-empty

(0 ∈ C) and finite (it is a subset of {0, . . . , k − 1}), so it has a maximum, jM .

By the defining property, there is a node τM so that all nodes above τM are colored by

colors ≥ jM . If jM = k − 1 then all nodes above τM have color jM and there is a full

monochromatic subtree.

If jM � k − 1, then by maximality, jM + 1 is not in C, and so above each node in 2<ω

there is a node τ so that jM + 1 > f(τ). In particular, if we consider nodes above τM , above

each of these nodes there is a node with color < jM +1, but all have color ≥ jM . Hence above

each node extending τM there is a node of color exactly jM . From these we can construct a

monochromatic subtree S isomorphic to 2<ω of color jM .

Construction.

Stage 0. Let σ〈〉 be the least extension τ of τM having f(τ) = jM , and add σ〈〉 to S.

Stage s + 1. For each leaf σα in S at the end of stage s (i.e., nodes with subscript α of
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length s), let σα_0 and σα_1 be the least extensions of σ_α 0 and σ_α 1 of color jM . (Existence

of such nodes is guaranteed by maximality of jM as discussed in the previous paragraph.)

Add these nodes to S.

This ends the construction.

The isomorphism is provided by the indices.

Note that as in the case with two colors, this tree is computable when f is (and jM is

given). Calculating jM is not uniformly computable—in the proof above, the set C is defined

by a Σ0
2 statement.

Of course the infinite pigeonhole principle (RT 1
k ) follows almost immediately from TT 1

k :

Given f , a k-coloring of the natural numbers, define a (1, 2)-coloring g on the tree 2<ω by

setting g(σ) = i when g(|σ|) = i, where |σ| is the length of the node σ. Once a monochromatic

tree is found, the collection of lengths of nodes appearing in that tree will be a monochromatic

subset for f . (We will use this level coloring argument again later.)

It is known that the infinite pigeonhole principle is equivalent to the bounding principle

BΠ0
1 (see [34] or [8]) which is strictly weaker than Σ0

2-IND. We conclude that the strength

of TT1
k lies between BΠ0

1 and Σ0
2-IND.

In this preliminary case when n = 1, we are able to guarantee the existence of a com-

putable monochromatic substructure (though not in a uniform way, exactly as is the case

for Ramsey’s theorem for n = 1). (As we will see in the next section, when n ≥ 2 the lowest

guaranteed complexity is Π0
n.)

We proceed with our assessment of the axiomatic strength of the the tree theorems, now

proving the case when n = 2, which provides a base case for the inductive proof for larger n.
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Theorem 3.3.4 ([10]). (ACA0) For all k, TT2
k. That is, for any (k, 2)-coloring of 2<ω, there

is a monochromatic subtree isomorphic to 2<ω.

We first prove the theorem for the case when k = 2, and will later extend the argument

to k colors.

Proof for k = 2. Suppose f : [2<ω]2 → {red, blue} is a (2, 2)-coloring of the full binary tree.

Given any σ ∈ 2<ω, we define a family of induced coloring maps on single nodes,

fσ : {τ ∈ 2<ω | τ ⊃ σ} → {red, blue},

by setting fσ(τ) = f(σ, τ).

Define pσ, Tσ, and cσ as follows. Set p〈 〉 = 〈 〉 and T〈 〉 = 2<ω. Suppose pσ and Tσ have

been defined. If there is a full blue subtree of Tσ above pσ using fpσ , then make the following

assignments:

• cσ = blue.

• Let pσa0 and pσa1 be the first two incomparable nodes of the full blue subtree of Tσ

above pσ using fpσ .

• For ε ∈ {0, 1}, set Tσaε = {τ ∈ Tσ | τ w pσaε}.

If there is no full blue subtree of Tσ above pσ using fpσ , then make the following assignments:

• cσ = red.

• Let pσa0 and pσa1 be the first two incomparable nodes of the standard red tree of Tσ

above pσ using fpσ .
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• For ε ∈ {0, 1}, Tσaε consists of those nodes of the standard red tree of Tσ above pσ

using fpσ which extend pσaε.

Let S = {pσ | σ ∈ 2<ω}. Since pσ is arithmetically definable from the values of pτ and cτ

for τ < σ, ACA0 proves the existence of S. By the construction, whenever σ < τ ∈ 2<ω, we

have f(pσ, pτ ) = cσ. The map pσ 7→ cσ is a (2, 1)-coloring of S, and its existence is provable

in ACA0. Since ACA0 implies Σ0
2-IND, Theorem 3.3.3 holds in ACA0, and we may apply it

here to obtain a color c and a subtree T of S such that pσ ∈ T implies cσ = c. Consequently,

if pσ < pτ are elements of T , then f(pσ, pτ ) = c, completing the proof.

We now extend the result to (k, 2)-colorings.

Proof of Theorem 3.3.4 for k colors. Suppose f : [2<ω]2 → k is a finite coloring of pairs of

comparable nodes of 2<ω. Given any σ ∈ 2<ω, we define an induced map on single nodes

fσ : {τ ∈ 2<ω | τ ⊃ σ} → k by setting fσ(τ) = f(σ, τ).

Define pσ, Tσ, and cσ as follows. Set p〈 〉 = 〈 〉 and T〈 〉 = 2<ω. Given pσ and Tσ,

define cσ as follows. Let j be the least integer such that there is no p ⊃ pσ in Tσ such that

∀τ ∈ Tσ(τ ⊃ p→ j < fpσ(τ)). Since j is the least such integer, there is a p ⊃ pσ in Tσ such

that ∀τ ∈ Tσ(τ ⊃ p→ j ≤ fpσ(τ)). Fix this p, and note that by the definition of j, there is

no q ⊃ p in Tσ such that ∀τ ∈ Tσ(τ ⊃ q → j < fpσ(τ)). If we treat the color j as red and the

colors greater than j as blue, by Theorem 3.3.1, the standard j-colored subtree of Tσ above

p using fpσ exists and is isomorphic to 2<ω. Call this tree T . Let cσ = j. Let pσa0 and pσa1

be the two level one elements of T . For ε ∈ {0, 1}, let Tσaε be the subtree of T with root

pσaε.

Let S = {pσ | σ ∈ 2<ω}. Since pσ is arithmetically definable from the values of pτ and cτ
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for τ < σ, ACA0 proves the existence of S. By the construction, whenever σ < τ ∈ 2<ω, we

have f(pσ, pτ ) = cσ. The map pσ 7→ cσ is a finite coloring of S, and its existence is provable

in ACA0. Since ACA0 implies Σ0
2− IND, an application of Theorem 3.3.3 yields a color c and

a subtree T of S such that pσ ∈ T implies cσ = c. Consequently, if pσ and pτ are nodes in T

with σ < τ , then pσ < pτ and f(pσ, pτ ) = c, completing the proof.

We complete the proof of TTn
k in ACA0 using the following inductive step. We abbreviate

∀k(TTn
k) by TTn.

Theorem 3.3.5 ([10]). (ACA0) For all n ≥ 1, TTn implies TTn+1.

Proof. We will generalize the proof of Theorem 3.3.4 to handle higher exponents by con-

structing a subtree S such that the color of any (n + 1)-chain is determined by its first

n elements, and applying TTn to S to obtain the desired monochromatic tree. Suppose

f : [2<ω]n+1 → k is a finite coloring of the (n + 1)-chains in 2<ω. If P = {pτ | τ v σ} is the

complete path of nodes leading to and terminating in pσ, we define an induced coloring of

single nodes τ ⊃ pσ by setting

fpσ(τ) =
∏

~m∈[P ]n

pr(~m)f(~m,τ).

where if k is the integer code for the sequence ~m, then pr(~m) is the kth prime. Note that fpσ

uses no more than k|P |
n

colors.

Define pσ, Tσ, and cσ as follows. Set p〈 〉 = 〈 〉 and T〈 〉 = 2<ω. Given pσ and Tσ, let cσ

be the greatest integer in the range of fpσ such that there is a p ⊃ pσ in Tσ such that

∀τ ∈ Tσ (τ ⊃ p→ cσ ≤ fpσ(τ)).
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Fix the least such p, and note that the standard cσ-colored subtree of Tσ above p using fpσ

exists and is isomorphic to 2<ω. Call this tree T . Let pσa0 and pσa1 be the two level one

elements of T and let Tσaε be the subtree of T with root pσaε for ε ∈ {0, 1}.

Since pσ is arithmetically definable from the values of pτ and cτ for τ < σ, ACA0 proves

the existence of the tree S = {pσ | σ ∈ 2<ω}. By the construction of S, given any increasing

sequence of elements of S of the form

p1 < p2 < · · · < pn < pn+1 < pn+2,

we have fpn(pn+1) = fpn(pn+2), and so f(p1, . . . , pn, pn+1) = f(p1, . . . , pn, pn+2). Conse-

quently, the function g : [S]n → k defined for pσ1 < · · · < pσn by

g(pσ1 , . . . , pσn) = f(pσ1 , . . . , pσn , pσa
n 0)

indicates the color of the (n+ 1)-chains extending (pσ1 , . . . , pσn). By TTn there is a subtree

of S which is isomorphic to 2<ω, monochromatic for g, and hence monochromatic for f .

We made use of ACA0 in proving the previous theorem, and the following reversal shows

that this was, in fact, unavoidable.

Theorem 3.3.6 ([10]). For n ≥ 3 and k ≥ 2, RCA0 proves that the following are equivalent:

(1) ACA0,

(2) TTn, and

(3) TTn
k.
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Proof. Theorems 3.3.4 and 3.3.5 show that (1) implies (2). Since (3) is a special case of (2),

it remains only to show that (3) implies (1).

Note that (3) implies Ramsey’s theorem for n-element sets and two colors by another

level coloring argument. Let f be a 2-coloring of [N]n. Define f̃ , a 2-coloring of [2<ω]n,

as follows. For an n-chain of nodes 〈σ1, . . . , σn〉, set f̃(〈σ1, . . . , σn〉) = f({|σ1|, . . . , |σn|}),

where |σ| denotes the length of σ. From any monochromatic subtree for f̃ , we can construct

an infinite monochromatic set for f . Whenever n ≥ 3, Ramsey’s theorem for n-tuples

and two colors implies ACA0 (see Lemma III.7.5 of [50]). This fact closes the circuit of

implications.

We have shown that TT3
2 implies ACA0, but the exact strength of TT2 and TT2

2 remain

open. Using the level coloring argument of Theorem 3.3.6, it is easy to show that TT2

implies Ramsey’s theorem for pairs, but whether or not the converse is provable in RCA0 is

not known.

3.4 A Π0
2 bound

We now turn to an analysis of the complexity of the monochromatic substructures for n = 2.

Subsequently, we will use this as a base case for proving the Π0
n bound for computable

colorings of n-chains.

For the case when n = 2, we cannot expect to find a computable (or even c.e.) monochro-

matic substructure.

Theorem 3.4.1 ([10]). If n ≥ 2 then there is a computable 2-coloring of [2<ω]n with no Σ0
n

monochromatic subtree.
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Proof. Consider the following theorem due to Jockusch [36], and proceed with a level coloring

argument.

Theorem 3.4.2 ([36]). If n ≥ 2 then there is a computable 2-coloring of [N]n with no Σ0
n

monochromatic subset.

Let f be a computable 2-coloring of [N]n having no Σ0
2 monochromatic subset as in

Jockusch’s theorem. Define f̃ , a 2-coloring of [2<ω]n, as follows. For an n-chain of nodes

〈σ1, . . . , σn〉, set f̃(〈σ1, . . . , σn〉) = f({|σ1|, . . . , |σn|}), where |σ| denotes the length of σ.

Clearly f̃ is a computable coloring of [2<ω]n. Furthermore, if there is a Σ0
n monochromatic

substructure S for f̃ , the collection of natural numbers realized as the lengths of the nodes

in S is a Σ0
2 homogeneous subset for f , and we have a contradiction.

Thus, we cannot expect a computable coloring of 2-chains to have a Σ0
2 homogeneous

substructure. In the following theorem we show that at worst, we will be able to find a Π0
2

monochromatic substructure.

Theorem 3.4.3 ([10]). Every computable finite coloring of pairs of comparable nodes of 2<ω

has a Π0
2 monochromatic subtree that is isomorphic to 2<ω.

Proof. We will carry out the proof for two colors, and then indicate how to extend the result

to an arbitrary finite number of colors. Suppose f : [2<ω]2 → {red, blue} is a computable two

coloring of the pairs of comparable nodes of 2<ω. Any computable monochromatic subtree

would be Π0
2 definable, so for the remainder of the proof we may assume no computable

monochromatic subtree exists.

We will show that the complement of the desired monochromatic subtree is computably

enumerable in 0′ and then apply the strong hierarchy theorem [52]. Initially, we will need
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to enumerate the complement of a tree S, and it is from this tree that we will extract our

monochromatic subtree. This enumeration, computable from 0′, will be built using movable

markers.

Intuitively, the markers used in this proof eventually settle on nodes corresponding to

nodes of S, above each of which S is monochromatic in a certain sense (described in the next

paragraph). By making initial guesses at associated colors and allowing for later revisions, we

can execute the construction using only a 0′ oracle. The selection of the nodes is complicated

by our goal of arranging for the monochromatic tree to be isomorphic to 2<ω, especially when

the color blue is assigned to a node.

For each α ∈ 2<ω we will have a marker pα. We write psα to indicate the location of pα

at stage s, and we will use the colors csα ∈ {red, blue}. At each stage, if α < β and psα and

psβ are in use, we require psα < psβ and f(psα, p
s
β) = csα. We will frequently write fpα(pβ) for

f(pα, pβ).

At each stage s, we will also have a finite set M s consisting of all α ∈ 2<ω such that pα is

in use, and a finite set Es which is a correct initial segment of the complement of S. (M is

for map and E is for ejected.) In selecting locations for newly introduced markers, we will

be careful to avoid elements of Es.

With each α ∈ 2<ω and stage s, we will associate a tree T sα of possible extensions of

psα. Just as we intend for psα to converge to a node in S, we intend for T sα to converge to a

tree isomorphic to 2<ω. However, T sα may be a finite tree at some stages, due to erroneous

selections. Regardless of the size of T sα, it is completely described by Es together with a

finite sequence of pairs called a descriptor.

Descriptors are defined inductively as follows. The sequence of no pairs, 〈 〉, is a descriptor

43



for 2<ω. Writing d(T sα) for the descriptor of T sα, if p ∈ T sα then d(T sα)a(p, red) is the descriptor

for the tree obtained by following the algorithm for constructing the standard red subtree

of T sα above p using fp, avoiding all nodes in Es. In executing the algorithm to find the

standard red subtree, we will assume that all elements at level k are determined before any

elements at level k+ 1. Similarly, d(T sα)a(p, full) is the descriptor for the tree of all elements

of T sα extending the least extension of p which lies above all elements of Es. Call this least

extension the root. Because of the way we will construct Es, the root of the tree with

descriptor d(T sα)a(p, full) is always a proper extension of p. Because of the way descriptors

are defined, for every s and α, T sα is either isomorphic to 2<ω or finite. Since descriptors are

always finite, they can be encoded by an integer and tagged onto markers.

In the following construction, the behavior of each marker is very limited. Initially, we

place pα and guess that red is the appropriate color for cα. As long as no difficulties arise

in locating extensions of pα in standard red subtrees, pα and cα remain unchanged. If the

search for extensions fails, then (some) pα must have a full blue subtree for fpα . In this case,

we change cα to blue and attempt to move pα to a successor of its current location. This

move is a necessary complication, allowing us to decode a monochromatic subtree from the

current tree. If cα is blue at stage s, then pα will not be moved unless the descriptor d(T sα)

is shortened, or for some β < α, pβ is modified.

Construction.

Stage 0. Let p0
〈 〉 = 〈 〉, c0〈 〉 = red, d(T 0

〈 〉) = (〈 〉, red), E0 = ∅, and M0 = {〈 〉}. Thus, we

have assigned the empty node the color red, will search for successors of this marker in the

standard red subtree of 2<ω for 〈 〉 using f〈 〉, have determined no elements in the complement
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of the tree from which we will extract our monochromatic tree, and have placed exactly one

marker, corresponding to the location of 〈 〉 in 2<ω. All other markers are unassigned.

Stage s+ 1. We will use two cases to describe the action at this stage.

Case 1. For each leaf β ∈ M s, we can locate incomparable proper extensions pβ,0 and

pβ,1 of psβ in T sβ . Note that we can determine whether or not this case holds on the basis of

finitely many queries to 0′. When this case holds, do the following:

1. For each leaf β ∈M s and each ε ∈ {0, 1}:

• Set ps+1
βaε

= pβ,ε and cs+1
βaε

= red;

• add all elements of M s and βaε to M s+1;

• Let the descriptor for T s+1
βaε

be d(T sβ)a(pβ,ε, red).

2. For all other α, set ps+1
α = psα, cs+1

α = csα, and d(T s+1
α ) = d(T sα).

3. Let L = max{lh(ps+1
α ) | α ∈M s+1}, and set

Es+1 = Es ∪ {τ ∈ 2<ω | lh(τ) < L ∧ ∀α ∈M s+1(τ 6= ps+1
α )}.

Case 2. Case 1 fails, so there is a leaf β ∈ M s with no incomparable proper extensions

of psβ in T sβ . Using 0′ we can fix such a leaf β.

Intuitively, whenever this situation arises, we need to create a blue marker. For example,

if csβ is red and we can find no such extensions, then we should change csβ to blue. Though not

as obvious, blue markers with no extensions arise from erroneous red nodes in descriptors. To

complicate matters, simply changing the color of a marker creates problems with extracting
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the final monochromatic tree from the tree under construction. Consequently, in this case

we will move some marker and color it blue.

We will search each tree B in a list for a pair of nodes p0 < p1 such that ∀τ ∈ B(p1 < τ →

fp0(τ) = blue). The trees fall into two categories. If α v β and csα = red, then the descriptor

d(T sα) is of the form da(psα, red). For each (possibly empty) sequence pα,0 < pα,1 < · · · < pα,k

of nodes in the tree with descriptor da(psα, full), add the tree with descriptor

da(psα, full)a(pα,0, red)a . . .a (pα,k, red)

to the list. If α v β and csα = blue, then the descriptor d(T sα) may be of the form

da(pα,0, red)a . . .a (pα,k, red)a(pα,k+1, full)a(pα,k+2, full) where k ≥ 0. If so, then for each

j ≤ k add the tree with the descriptor

da(pα,0, red)a . . .a (pα,j−1, red)a(pα,j, full)

to the list. Search all trees in the list until p0 and p1 as described at the beginning of this

paragraph are found. (We allow p0 to be the root of a tree; in particular, if the descriptor

of B terminates in (pα,j, full), we may let p0 be the root of B, which is the least extension

of pα,j lying above all elements of Es.) A proof that this search always terminates is given

in Claim 3.4.4 below. Remember the descriptor of the tree for which the search succeeded,

including the value of α.

Suppose we have found p0, p1, and α v β as specified in the preceding paragraph. Do

the following:
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1. Let M s+1 = {γ ∈M s | γ 6= α}.

2. For γ ∈M s+1 − {α}, let ps+1
γ = psγ, c

s+1
γ = csγ, and d(T s+1

γ ) = d(T sγ ).

3. Let Es+1 = Es.

Denote the descriptor of the tree for which the search succeeded by d0 and do the following:

1. Set cs+1
α = blue and ps+1

α = p0.

2. Let d(T s+1
α ) = da0 (p0, full)a(p1, full).

This completes the construction.

The next four claims show that the construction yields the desired enumeration of the

complement of the preliminary tree, from which we will extract our monochromatic tree.

Claim 3.4.4. The search described in Case 2 of Stage s+ 1 always terminates.

Proof. Suppose there is a leaf β ∈ M s with no proper extensions of psβ in T sβ . The absence

of extensions indicates that T sβ is not isomorphic to 2<ω, so T sβ must be finite. Each initial

segment of the descriptor d(T sβ) is a descriptor for some tree. Since the empty sequence is

the descriptor for 2<ω, there must be a first pair (p, c) such that the initial segment of d(T sβ)

terminating in (p, c) describes a finite tree.

If d is the descriptor for a tree isomorphic to 2<ω containing p, then da(p, full) is also

isomorphic to 2<ω. Thus the pair (p, c) in the preceding paragraph must be of the form

(p, red). The node p must either be a pα for some α v β, or a node on a path leading to

some pα for which csα = blue. We will consider these situations in order.

First suppose (p, c) is of the form (pα, red) for some α v β where csα = red. Then d(T sβ)

is of the form da(psα, red)ad̂. (Note that the following holds when d̂ = ∅.) The tree with
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descriptor da(psα, full) is isomorphic to 2<ω. Suppose by way of contradiction that the search

fails. That is, given any (possibly empty) sequence pα,0 < pα,1 < · · · < pα,k of nodes in the

tree with descriptor da(psα, full), if we let B be the tree with descriptor

da(psα, full)a(pα,0, red)a . . .a (pα,k, red),

then there is no pair p0 < p1 in B such that ∀τ ∈ B (p1 < τ → fp0(τ) = blue). Consequently,

for any such B, p0, and p1, there is a τ ⊃ p1 in B such that fp0(τ) = red. We can use this

feature to construct a computable monochromatic red tree as follows.

Let B denote the tree with descriptor da(psα, full). Let q〈 〉 denote the root of this tree;

that is, q〈 〉 is the least extension of psα lying above all elements of Es. By the preceding

paragraph, there is no p1 ⊃ q〈 〉 such that ∀τ ∈ B (p1 < τ → fq〈 〉(τ) = blue). Let B〈 〉 be

the tree with descriptor da(q〈 〉, red). By Lemma 3.3.1, B〈 〉 is isomorphic to 2<ω. Suppose

qα and Bα are defined and Bα is isomorphic to 2<ω. Let qαa0 and qαa1 be the first pair of

incomparable elements of Bα. For each ε ∈ {0, 1}, treating qαaε as p0, by the preceding

paragraph, the tree with descriptor

da(q〈 〉, red)a . . . (qα, red)a(qαaε, red)

(which will be Bαaε) is isomorphic to 2<ω. Note that if α < β, then qβ ∈ Bα, so fqα(qβ) = red.

Thus {qα | α ∈ 2<ω} is a computable monochromatic tree for f .

The existence of a computable monochromatic tree for f contradicts the first paragraph

of the proof of this theorem. Consequently, when csα is red, the search must terminate,
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completing the proof for this situation.

Now suppose (p, c) is of the form (pα,j, red) for some α v β where csα = blue. Then d(T sβ)

is of the form

da(pα,j, red)a . . .a (pα,k, red)a(pα,k+1, full)a(pα,k+2, full)ad̂.

(Note that the following holds if d̂ = ∅ and also if j = k.) Since (pα,j, red) was the first

pair yielding a finite tree, the tree with descriptor da(pα,j, full) is isomorphic to 2<ω. As in

the preceding paragraphs, if we cannot find p0 and p1 satisfying the search, then we can

construct a computable monochromatic tree, yielding a contradiction. This completes the

proof of the claim that the search always succeeds.

Claim 3.4.5. For every α ∈ 2<ω, the following limits exist: lims p
s
α = pα, lims c

s
α = cα, and

lims d(T sα) = dα.

Proof. Consider the possible behaviors for ps〈 〉. If ps〈 〉 is never moved, then p〈 〉 = 〈 〉,

c〈 〉 = red, and T〈 〉 is the tree with descriptor (〈 〉, red). At some stage s, ps〈 〉 may be moved,

in which case cs〈 〉 = blue and T s〈 〉 has a new descriptor of some length n. At any successive

stage t, ct〈 〉 = blue and if pt〈 〉 moves, then the descriptor of T t〈 〉 is shortened. Consequently,

the process must eventually converge to a limiting pα and dα.

If pα, cα and dα have achieved their limits at stage s, then the only allowable changes in

ptαaε, c
t
αaε, and d(T tαaε), for ε ∈ {0, 1} and t > s are exactly those in the preceding paragraph.

Thus, all the markers must achieve their limits.

Furthermore, each time Case 2 of Stage s+ 1 is executed, either M s is decreased in size,
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or for some α ∈M s, either csα is changed from red to blue or the descriptor of T sα is shortened.

Since M s and all descriptors are finite, Case 1 of Stage s + 1 must occur infinitely often.

Consequently, once pα achieves its limit, psαaε must eventually be introduced, and will also

achieve its limit. Thus, for every α ∈ 2<ω, pα and cα are assigned, and Tα is a nonempty

tree.

Claim 3.4.6. For every α ∈ 2<ω, if α < β then pα < pβ, dα < dβ, and fpα(pβ) = cα.

Proof. Detailed examination of the construction shows that for each s, if α < β ∈M s, then

psα < psβ, psβ ∈ T sα, and d(T sβ) extends d(T sα). Consequently, fpsα(psβ) = csα and T sβ ⊂ T sα. Since

these relationships are preserved at each stage, they must hold in the limit.

Claim 3.4.7. {pα | α ∈ 2<ω} =
⋃
sE

s.

Proof. As shown in Claims 3.4.5 and 3.4.6, for each α ∈ 2<ω, pα exists, and if β = α, then

pβ = pα. Thus, the length of psα can be forced to exceed any fixed bound in N by picking

suitably large values of s and α. By virtue of the definition of Es+1 in Case 1 of Stage s+ 1

(which occurs infinitely often),
⋃
sEs ⊇ {pα | α ∈ 2<ω}. Since each T sα is defined so as to

avoid elements of Es, no pα can be an element of
⋃
sEs.

Summarizing the proof to this point, we have a subtree {pα | α ∈ 2<ω} which is isomorphic

to 2<ω, and satisfies fpα(pβ) = cα whenever α < β. Furthermore, the complement of this set

is the union of finite sets each of which can be computed with the aid of 0′. Consequently,

the complement is computably enumerable in 0′. Thus, we have found the desired tree, with

complement computably enumerable in 0′. It remains to extract a monochromatic subtree

and describe an enumeration for its complement.
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First, suppose there is an α such that for all β w α, cβ = red. Then the subtree

T = {pβ | β w α} is the desired monochromatic red tree. To enumerate the complement of

T , repeat the construction, adding psγ to Es whenever psγ 6= pα. Since the complement of T

is computably enumerable in 0′, by the strong hierarchy theorem T is Π0
2 definable.

Finally, suppose that for every α there is a β = α such that cβ = blue. We repeat the

construction, adding new markers {tα | α ∈ 2<ω}, new finite subsets of the complement of

the monochromatic tree {F s | s ∈ N}, and new maps {N s | s ∈ N} where N s contains those

α for which tα is attached at stage s.

Run the construction until the first csα is set to blue. Let ts〈 〉 = psα, N s = {〈 〉}, and

F s = {psβ | β ∈M s ∧ β 6= α}. Note that if psβ ∈ F s, then csβ = red.

At stage s+ 1, execute the process for constructing S, and then consider three cases.

Case 1. For each leaf β ∈ N s, given that tsβ = psγ, suppose we can locate extensions

psδ0 = psγa0 and psδ1 = psγa1 such that csδ0 = blue and csδ1 = blue. In this case, do the following:

1. For each leaf β ∈ N s and each ε ∈ {0, 1},

• set ts+1
βaε

= psδε , and

• add all elements of N s and βaε to N s+1.

2. For all other α ∈ N s, set ts+1
α = tsα.

3. Define F s+1 by the equation

F s+1 = F s ∪ {τ ∈ 2<ω | ∃α ∈M s+1(τ = ps+1
α ) ∧ ∀α ∈ N s+1(τ 6= ts+1

α )}.

Case 2. For some β ∈ N s, a predecessor of tsβ is moved. Let psδ be this predecessor node.
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Because of the way nodes are added in Case 1, there is a unique least α v β such that

tsα w psδ. Find this α, and do the following:

1. Let N s+1 = {γ ∈ N s | γ 6= α}.

2. For γ ∈ N s+1 − {α}, let ts+1
γ = tsγ.

3. Let F s+1 = F s.

4. Let ts+1
α = ps+1

δ .

This last step is possible because psδ was moved to a previously unassigned location, guaran-

teeing that psδ /∈ F s. Furthermore, since psδ moved, cs+1
δ = blue.

Case 3. If neither Case 1 nor Case 2 holds, let N s+1 = N s, F s+1 = F s, and ts+1
α = tsα for

all α ∈ N s+1.

It is not difficult to show that for each α, the limit tα = lims t
s
α exists, and that it marks

some pγ such that cγ = blue. Also, {tα | α ∈ 2<ω} =
⋃
sEs ∪

⋃
s Fs, so {tα | α ∈ 2<ω}

is the complement of a set which is computably enumerable in 0′. Thus, in this situation,

{tα | α ∈ 2<ω} is a blue monochromatic tree which is Π0
2 definable.

We have completed the proof for two colors. To extend the result to an arbitrary finite

number of colors, we modify the construction, assigning colors 0 through k in order. Initially

csα is assigned 0. In Case 2 of Stage s+ 1, if csα is assigned j < k then we search for p0 < p1

such that ∀τ ∈ B(p1 < τ → j < fp0(τ)) and set cs+1
α = j + 1. The color k behaves like blue

in the original construction.

The claims are proved as before, and again yield a tree with each cα in {0, . . . , k}. Pick the
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least j such that there is an α such that for all β w α, cβ ≤ j. If j = 0, then T = {pβ | β w α}

is the desired monochromatic subtree. Otherwise, rerun the construction using new markers

to extract a j-colored subtree. The Π0
2 bound follows as before.

3.5 The Π0
n bound

In the previous section, we showed that when n = 1, there is a computable monochromatic

substructure (though for more than two colors, this fact is not provable in RCA0). In this

section, we give definitions and develop some machinery that will allow us to use the n = 2

case shown above as a base for an induction yielding the appropriate bound for n > 2.

Theorem 3.5.1 ([10]). Let n ≥ 2. If f : [2<ω]n → k is computable, then there is a Π0
n

monochromatic subtree isomorphic to 2<ω for f .

The theorem will be proven at the end of this chapter. It follows in perfect analogy with

Jockusch’s result [36] that for n ≥ 2, if f is a computable partition of [N]n, then there is an

infinite Π0
n subset of N on which f is constant.

Before we begin talking about colorings of the n-chains of 2<ω, we make some basic

definitions and observations. For now, let f : 2<ω → k. Also (and always), for each α ∈ 2<ω,

we let Tα denote the full subtree of 2<ω rooted at α, that is Tα = {τ ∈ 2<ω | α v τ}. Now

we can define color blocks and avoiding trees.

Definition 3.5.2. A color block for f is a set of k + 1 chains with the following properties:

1. Each chain consists of k nodes, exactly one of each color.

2. Any two nodes chosen from distinct chains are incomparable.
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Definition 3.5.3. For c < k, we say f has a full c-avoiding tree if there is some node τ such

that for all σ = τ , f(σ) 6= c.

The following lemma ensures that we may always assume that we have one or the other

of these two objects. Note that although the lemma is stated and proved for 2<ω, its conse-

quence applies to Tα for any α ∈ 2<ω, as do the consequences of the lemmas and theorems

in the previous section.

Lemma 3.5.4. Either there is a c such that f has a full c-avoiding tree or there is a color

block for f .

Proof. We will search 2<ω for a color block for f . If the search fails, it is because we have

discovered a full c-avoiding tree for some c.

Begin by selecting k + 1 pairwise incomparable nodes in 2<ω, the least k + 1 such nodes

will do. For each node σ in this collection, do the following:

Let σ0 = σ. For 0 ≤ i ≤ k − 2, given σi, let σi+1 be the least node extending

σi with f(σi+1) 6= f(σj) for j ≤ i, if such a node exists. (Note that deciding the

existence of such a σi+1 requires a query to 0′ when f is computable.)

If this search fails for some i, it is because for each node τ extending σi there is some

j ≤ i so that f(τ) = f(σj), thus Tσi is c-avoiding for any c 6∈ {f(σj)|j ≤ i}.

If the search does not fail, we have successfully constructed k+1 non-intersecting chains,

each consisting of k distinctly colored nodes. Furthermore, when f is computable, this

construction may be carried out with only finitely many (in fact at most (k − 1)(k + 1))

queries to 0′.
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In our later constructions, when a color block exists, we will exploit the following basic

fact to work toward building our homogeneous set.

Lemma 3.5.5. If there is a color block for f , then there is a monochromatic subtree iso-

morphic to 2<ω in which the first level (as distinct from the zeroth level) consists of (exactly

two) nodes in the color block.

Proof. Let B be a color block for f . For each i ≤ k, let µi be the maximal node in the ith

chain.

By Theorem 3.3.3, each tree Tµi has a monochromatic subtree isomorphic to 2<ω, and as

there are k+ 1 such trees, at least two of them are of the same color, say c < k. Assume Tµi

and Tµj have monochromatic subtrees Si and Sj, respectively, of color c with corresponding

roots µi and µj. Let σi and σj be the elements of the ith and jth chains in B having color c.

Then T = {〈 〉, σi, σj}∪ (Si\{µi})∪ (Sj\{µj}) is a monochromatic subtree of 2<ω isomorphic

to 2<ω having its first level nodes in the color block B.

For what follows, we will need a slightly more flexible definition of color blocks.

Definition 3.5.6. If f is a k-coloring and S is a subset of the colors, an S-color block for

f is a collection of |S|+ 1 chains, each of which is composed of exactly one node from each

color in S, satisfying the incomparability requirement in the definition of a color block.

The definition below describes the main tool we will need in our construction of the

homogeneous substructure.

Definition 3.5.7. An f -forest is a collection of finite binary trees with nodes from a sequence

of disjoint sets of nodes, 〈Li〉i∈N, defined as follows:
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Let L0 = {〈 〉}. Note that the range of f is {0, . . . , k−1}, and attach the tag ({0, . . . , k−

1}, 〈 〉) to 〈 〉.

Suppose that Ln is defined. If some σ ∈ Ln has a tag then do the following:

1. If the tag on σ is (S, τ) and |S| > 1, then check for an S-color block above τ using the

algorithm described in the proof of Lemma 3.5.4.

(a) If such a color block is located, add all the nodes in the color block to Ln+1.

Whenever µ is the supremum of a chain in the color block attach the tag (S, µ)

to µ. Remove the tag from σ.

(b) If no such color block exists, then for some c ∈ S and some β above τ there is a

c-avoiding tree above β. Change the tag on σ to (S − {c}, β).

2. If the tag on σ is (S, τ) and |S| = 1, then the tree above τ is monochromatic. Add τa0

and τa1 to Ln+1. Attach the tag (S, τa0) to τa0 and (S, τa1) to τa1. Remove the tag

from σ.

If no element of Ln has a tag, then the calculation of Ln+1 is complete, and Ln+1 is now

defined.

The f -forest consists of all finite monochromatic binary subtrees T such that for all k

less than or equal to the height of T , the kth level of T consists of exactly 2k elements from

Lk.

This completes the definition of the f -forest, and we conclude by noting that the f -forest

is a partially ordered set under extension.
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In the following, given any finite tree T , let pTq denote some canonical integer code for

T .

Lemma 3.5.8. If f is computable, then the f -forest is computable from 0′. Furthermore,

there is a function g computable from 0′ such that for all n, if T is an element of the f -forest

of height n, then pTq ≤ g(n).

Proof. Let T be a finite tree of height n, and F the f -forest for our computable f . To

determine whether T ∈ F , we first (computably) ensure that it is monochromatic and

isomorphic to 2≤n. Then check for each k ≤ n that

(∀σ ∈ T )[σ has k predecessors in T =⇒ σ ∈ Lk].

Thus membership in F reduces to finitely many questions about membership in the sets Lk

for k ≤ n. By the proof of Lemma 3.5.4 , the construction of the (finite) set Lk can be

carried out with the assistance of 0′.

Since each set Lk is finite, there are only finitely many trees of a given height n belonging

to F . With the aid of 0′, we may find these and set g(n) to exceed the largest of their

canonical indices.

We now give an important lemma.

Lemma 3.5.9. If f is computable, then there is a monochromatic subtree T isomorphic to

2<ω such that T ′ ≤ 0′′.

Proof. Let f be a computable k-coloring and F the associated f -forest. Consider F as a

partial order under inclusion and note that it has the structure of a finitely branching tree,
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though not typically binary. By Lemma 3.5.8 if the trees that are the nodes of this partial

order are identified with their canonical codes, we have a function g ≤ 0′ bounding each level

of F .

To see that F is infinite, suppose by way of contradiction that there is an upper bound on

the height of the trees in F . In this case, we may find a coloring h such that the maximum

height of a tree in the h-forest is minimal among all choices of colorings. Let H be a tree from

the h-forest that has this maximal height, which we will denote by n. By Lemma 3.5.4 and

the definition of an h-forest, n ≥ 1. Let L1 be the first level of the h-forest. If L1 consisted

of nodes taken from a monochromatic subtree, then H could be extended without bound in

the h-forest. Consequently, L1 is a color block. Let j be the number of colors in L1 and let

µ0, . . . , µj be the maximal elements of the j + 1 chains in L1. For each µi, the h-forest on

Tµi contains a monochromatic tree Mµi of height at least n. (Recall that n is the minimum

of the maximum height of a tree in the forest over all possible colorings.) Since there are

j + 1 of these trees and only j colors, two must match; suppose that Mui and Muj match,

where i 6= j. Let σi (respectively σj) be the node in the chain in L1 below µi (respectively

µj) of the same color as Mui (which is the same color as Muj). Then {σi, σj} ∪Mµi ∪Mµj is

a monochromatic tree in the h-forest of height at least n+ 1, yielding a contradiction. Thus

the elements of F are unbounded in height, and S is an infinite finitely branching tree with

each level bounded by the function g.

In light of these observations, we see that the (relativized) Jockusch-Soare low basis

theorem ([37]) may be applied to obtain a path P in S that is low over 0′, that is, P ′ ≤ 0′′.

This path is a sequence of nested finite monochromatic binary trees. Since each is as full as

possible for its height (the nth node in P is a tree isomorphic to 2≤n), their union yields a
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monochromatic subtree T , isomorphic to 2<ω. Finally, since T ≤ P and P ′ ≤ 0′′, we have

T ′ ≤ 0′′.

Before we can take the final steps in proving Theorem 3.5.14, we need one more definition

and a few more lemmas. These parallel and extend those that we have just seen. They are

the analogues for a family of finite colorings instead of a single coloring.

In what follows, we suppose that for each α ∈ 2<ω, the function fα : Tα → kα is a finite

coloring of Tα. Suppose the initial segments of α are α0 < α1 < α2 < · · · < αn = α. Define

k∗α = {(j0, . . . , jn) | ∀i ji < kαi}, and f ∗α : Tα → k∗α by f ∗α(τ) = (fα0(τ), fα1(τ), . . . , fαn(τ)).

Now we recursively define the 〈fα〉-forest for a family of colorings {fα}α∈2<ω .

Definition 3.5.10. An 〈fα〉-forest is defined in terms of a sequence of levels 〈Li〉n∈N. The

levels are defined as follows:

Let L0 = {〈 〉}. Note that f ∗〈 〉 = f〈 〉 and that the range of f〈 〉 is {0, 1, . . . , k〈 〉 − 1}.

Attach the tag ({0, 1, . . . , k〈 〉 − 1}, 〈 〉) to 〈 〉.

Suppose that Ln is defined. If some σ ∈ Ln has a tag, then do the following:

1. If the tag on σ is (S, τ) and |S| > 1, then check for an S color block for f ∗σ above τ

using the algorithm from the proof of Lemma 3.5.4.

(a) If such a color block is located, add all the nodes in the color block to Ln+1.

Whenever µ is the supremum of a chain in the color block, define

Sµ = {(v0, v1, . . . , v|σ|, . . . v|µ|) ∈ k∗µ | (v0, v1, . . . , v|σ|) ∈ S},

and attach the tag (Sµ, µ) to µ. Remove the tag from σ.
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(b) If no such color block is found, then for some c ∈ S and some β above τ there is

a c-avoiding tree for f ∗σ above β. Change the tag on σ to (S − {c}, β).

2. If the tag on σ is (S, τ) and |S| = 1, then the tree above τ is monochromatic for f ∗σ .

Add τa0 and τa1 to Ln+1. For each ε ∈ {0, 1}, define

Sτaε = {(v0, . . . , v|σ|, . . . , v|τaε|) ∈ k∗τaε | (v0, . . . , vσ) ∈ S},

and attach the tag (Sτaε, τ
aε) to τaε. Remove the tag from σ.

If no element of Ln has a tag, then the calculation of Ln+1 is complete, and Ln+1 is

defined. The 〈fα〉-forest consists of all finite binary subtrees T such that

1. the kth level of T contains exactly 2k elements from Lk, and

2. if σ, τ1, and τ2 are nodes of T and τ1 and τ2 both extend σ, then f ∗σ(τ1) = f ∗σ(τ2).

In short, the trees in an 〈fα〉-forest are constructed in much the same way as in an f -

forest. If T is a tree in an 〈fα〉-forest and τ is in T , then fτ is monochromatic on the nodes

of T above τ .

Lemma 3.5.11. Suppose that for each α ∈ 2<ω, fα : Tα → kα is a finite coloring of Tα.

If 〈fα〉α∈2<ω is a uniformly computable collection of finite colorings, then the 〈fα〉-forest is

computable from 0′. Furthermore, there is a function g such that g ≤ 0′ and for all n, if T

is a height n element of the 〈fα〉-forest, then pTq ≤ g(n).

Idea of proof: This proof is essentially the same as that of Lemma 3.5.8. The only alteration

in the computation of the levels Lk arises from the fact that the size of the color blocks may
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increase from one level to the next. However, given a node σ in Lk, the number of nodes in

the color block above σ is at most n2 +n, where n is the cardinality of the range of f ∗σ . Since

each level Lk is finite and computable from 0′, using only 0′ we can also compute membership

in the 〈fα〉-forest and the bounding function g.

Lemma 3.5.12. If 〈fα〉 is as in Lemma 3.5.11, then there is a subtree T such that the

following conditions hold.

1. T is isomorphic to 2<ω.

2. For each σ ∈ T , fσ is constant on {τ ∈ T | τ = σ}.

3. T ′ ≤ 0′′.

Proof. This proof parallels that of Lemma 3.5.9, substituting applications of Lemma 3.5.11

for uses of Lemma 3.5.8. In particular, we begin by letting F denote the 〈fα〉-forest and

order its elements by inclusion. By Lemma 3.5.11, F is a finitely branching tree bounded by

a function g, and both F and g can be computed from 0′.

The argument that F is infinite is similar but not identical to that in the proof of Lemma

3.5.9. Suppose by way of contradiction that there is an upper bound on the height of elements

of F . In this case, we may find a sequence of colorings 〈hα〉 such that the maximum height of

a tree in the 〈hα〉-forest is minimal among all choices of colorings. Let H be a tree from the

〈hα〉-forest that has this maximal height, which we will denote by n. Since the first level of

an 〈hα〉-forest is the same as the first level of an h〈 〉-forest, by Lemma 3.5.4 we have n ≥ 1.

Let L1 be the first level of the 〈hα〉-forest. We consider two cases.

First suppose L1 consists of nodes taken from a monochromatic subtree for h〈 〉; denote

these by τ0 and τ1. For each nonempty α ∈ 2<ω, define hτ0α by hτ0α (β) = hτa
0 α

(τa0 β) and also
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define hτ0〈 〉(β) = h∗τ0(t
a
0 β). Define hτ1α similarly, and note that for i ∈ {0, 1} the trees of the

〈hτiα 〉-forest are the extensions of τi in the 〈hα〉-forest. By our choice of n, the 〈hτ0α 〉-forest and

the 〈hτ1α 〉-forest each contain a tree of height n; call them Tτ0 and Tτ1 . Then {〈 〉} ∪ Tτ0 ∪ Tτ1

is a tree in the 〈hα〉-forest of height n+ 1, contradicting the choice of n.

Now suppose L1 consists of nodes in a color block for h〈 〉 and let µ0, . . . , µj be the

maximal elements of the j + 1 chains in L1. Note here that the cardinality of the range

of h〈 〉 on nodes in and above the chains is j. As in the previous paragraph, construct the

induced sequences of colorings for each µi, and a monochromatic tree Mµi of height n for

each µi. Two of these, say Mµi and Mµj , must agree in the first component of their coloring.

Pick σi in the chain below µi so that {σi} ∪ (Mµi −{µi}) is monochromatic for h〈 〉. Choose

σj for Mµj similarly, and note that {〈 〉, σi, σj} ∪ (Mµi − {µi}) ∪ (Mµj − {µj}) is a tree of

height at least n + 1 in the 〈hα〉-forest, contradicting the choice of n and completing the

proof that F is infinite.

We have shown that F is an infinite finitely branching tree, computable from 0′, with

levels bounded by a function g which is also computable from 0′. By the relativized Jockusch-

Soare low basis theorem [37], S has a path P such that P ′ ≤ 0′′. The desired tree T is the

union of the elements in this path. Note that the definition of an 〈fα〉-forest ensures that

for all σ ∈ T , f ∗σ is constant on {τ ∈ T | τ = σ} and so fσ is also constant on this set.

Lemma 3.5.13. Suppose n > 1 and f : [2<ω]n+1 → k is computable. There is a tree T

which is isomorphic to 2<ω such that the following hold:

1. T ′ ≤ 0′′.

2. If σ1, . . . , σn is a sequence of n comparable elements of T and τ1 and τ2 are extensions
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of σn, then f(σ1, . . . , σn, τ1) = f(σ1, . . . , σn, τ2).

Proof. Define 〈fα〉α∈2<ω as follows. If lh(α) < n, let fα(τ) = 0 for all τ . If lh(α) ≥ n,

let ~σ1, . . . , ~σn be an enumeration of the n-chains of nodes at or below α. For τ = α, let

fα(τ) =
∏

j≤n pr(σj)
f(~σj ,τ). Apply Lemma 3.5.12 to 〈fα〉 to obtain a tree T .

Note that T is isomorphic to 2<ω and that T ′ ≤ 0′′. Let ~σ denote a sequence σ1, . . . , σn

of comparable elements of T . By Lemma 3.5.12, fσn is constant on {τ ∈ T | τ = σ}. Let

τ1, τ2 ∈ T extend σn. Then fσn(τ1) = fσn(τ2). From the definition of fσn , we have

∏
j≤n

pr(σj)
f(~σj ,τ1) =

∏
j≤n

pr(σj)
f(~σj ,τ2),

and so f(~σ, τ1) = f(~σ, τ2) as desired.

Theorem 3.5.14. If f : [2<ω]n → k is computable, then there is a Π0
n monochromatic set

for f .

Proof. Now that the machinery is in place, we can essentially follow the proof of Theorem

5.5 of [36]. We use induction on n.

The case n = 1 follows from Theorem 3.3.3 and n = 2 follows from Theorem 3.4.3.

Suppose the theorem holds for some n ≥ 2, we will prove it for n+ 1. Let f : [2<ω]n+1 → k

be computable. Find T as in Lemma 3.5.13. Given any sequence σ0, . . . , σn−1 of comparable

elements of T , let σn be the least extension of σn−1 in T and define

f̂(σ0, . . . , σn−1) = f(σ0, . . . , σn−1, σn).

Note that f̂ is computable from T . By the induction hypothesis, there is a monochromatic
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tree T̂ for f̂ which is Π0
n in T . Since T̂ is monochromatic for f , it remains only to show that

T̂ is Π0
n+1. Since T̂ is Π0

n in T , there is a T -computable (n+ 1)-place predicate R such that

for all τ

τ ∈ T̂ ↔ ∀x1 . . . Qxn R(τ, x1, . . . , xn)

where QxnR is one of ∃xn and ∀xn. The predicate QxnR is computable in T ′ and hence

in 0′′. Applying Post’s hierarchy theorem (see, for example, [52]), we may replace QxnR by

either a Σ0
3 or a Π0

3 predicate, depending on whether QxnR is ∃xn or ∀xn. The resulting

predicate is the required Π0
n+1 definition of T̂ .
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Chapter 4

Orderings and algebraic structures

In this chapter, the structures we consider do not have an ordering as part of their signature.

Instead, we consider a computable copy of some structure and ask how hard it is (com-

putability theoretically) to find a linear ordering of the elements of the universe so that the

ordering is respected by the basic functions in the signature of the structure. Specifically, we

consider computable groups and semigroups, and begin by giving some basic introduction

to ordered groups. See [5], [25], or [38] for additional information and details.

4.1 Basic notions

A partial left ordering of a group or semigroup G is a partial ordering, <l, of its elements

satisfying for all x, y, z ∈ G

x <l y =⇒ zx <l zy.

A partial right ordering of G is defined similarly, x <r y =⇒ xz <r yz. A partial bi-ordering

of G is a partial ordering that is simultaneously left and right invariant.
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A partial left, right, or bi-ordering is a left, right, or bi-ordering if it is a total ordering.

We say a group is left-orderable if it admits a left-ordering of its elements, and bi-orderable

if it admits a bi-ordering.

Immediately from the definition, it is clear that a bi-orderable group or semigroup is

trivially left- and right-orderable, and a left-orderable group is right-orderable1. Of course a

right-orderable group is also left-orderable, but neither is necessarily bi-orderable. Further-

more, any group or semigroup that admits a total ordering of any kind must be torsion-free.

For groups, it is frequently convenient to present a partial or total ordering in a different

but equivalent way. For both left- and bi-orderings of groups, it is sufficient to specify the

collection of those elements that are ≥ eG, where eG is the identity in the group. This

collection is called the positive cone for the ordering < and we will usually denote it as P<

or PG, but will drop subscripts when the context is clear.

To see that it is sufficient to specify only the positive cone to completely describe a left-

(or bi-) ordering (or partial ordering) of a group, note that

a < b ⇐⇒ e < a−1b.

It is simple to check that the correspondence between orderings and cones is a bijection, and

we will often identify an ordering < with its positive cone P<. Note further that when G is

computable, this bijection preserves the Turing degree [57].

We may also take this opportunity to make note of an important fact. The subsets of

group G that are positive cones of a linear left-ordering of its elements can be characterized

1If <l is a left ordering on a group G, a right ordering can be defined by a <r b if and only if b−1 <l a−1.
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as follows. Let P be a subset of group G. Then P is the positive cone of some left-ordering

of G if and only if

1. eG ∈ P and P is a semigroup, i.e., P · P ⊆ P .

2. For each g ∈ G with g 6= eG, exactly one of g and g−1 is in P .

If in addition we have

3. For each g ∈ G, gPg−1 ⊆ P ,

then P is the positive cone of a bi-ordering of G. Furthermore, we may observe that if

we relax condition 2 from “exactly” to “at most”, P defines a partial left- or bi-ordering

(depending on satisfaction of 3).

Given a partial left-ordering P of G, it is natural to ask if that ordering extends to a total

left-ordering. For group elements g1, . . . , gn, let sgr(g1, . . . , gn) be the semigroup generated

by these elements and P+ = P − {eG}.

Theorem 4.1.1 ([11]). A partial left ordering P on group G can be extended to a total left

ordering if, and only if, for each tuple of non-identity group elements g1, . . . , gn, there exist

a tuple ε1, . . . , εn ∈ {1,−1} such that

e 6∈ sgr(P+ ∪ {gε11 , . . . g
εn
n }).

Note that when P is chosen to be the trivial partial order {eG}, Theorem 4.1.1 gives the

usual semigroup criteria for left-orderability due to Conrad [11].

For a group G, we call the collection of all left orderings LO(G), and the collection of all

bi-orderings O(G). Sikora [49] introduced a natural topology on the collection of all possible
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orderings of a given group. The structure of this space varies widely depending on the group

and has been studied, for example, in [14], [42], and [49]. In the much more general setting

of orderable magmas (sets with a binary operation), the same topology may be defined, and

the space is compact [14].

For countable orderable groups, the collection of possible orderings may be realized as

paths on a subtree of the binary tree representing the characteristic functions of the respective

positive cones. The collection of paths inherits the usual topology on paths of trees, and

thus the space of orderings is always a closed subspace of Cantor space. For a computable

group, this tree maybe computably constructed, and the space of orderings forms a Π0
1 class,

an computably closed subspace of Cantor space (for more, see [6]).

For computable fields, the collection of field orderings is always a Π0
1 class, and there

is a 1-1 Turing degree preserving bijection between any Π0
1 class and the orderings of some

orderable computable field [39]. There can be no such exact correspondence for groups. This

is a consequence of a well-known result of Jockusch and Soare: there is a Π0
1 class, with all

elements pairwise Turing incomparable [37]. Solomon [53] considered abelian and nilpotent

groups and was able to show that no such correspondence exists in even a weak way for these

groups.

In general, the question of whether a given group is left-orderable is not an easy one to

answer, but for a computable group, the problem can be reduced to determining whether

some computable binary tree has an infinite path. A modification of a construction of

Solomon [57] allows us to see this. We present first a non-computable construction of a tree,

the paths of which are the left orderings admitted by a given countable group G.

Let G−{eG} = {g0, g1, g2, . . .}, and for a node σ ∈ 2<ω, define Sσ = sgr(g
σ(0)
0 , . . . , g

σ(|σ|)
|σ| ).
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Construction.

Stage 0. Add 〈 〉 to T .

Stage s+1. For each leaf σ in T at the end of stage s, add σ_i to T (where i = 0 or 1) if and

only if Sσ_i extends to a full ordering of G. (Here we are taking advantage of the condition

in Theorem 4.1.1.)

This ends the construction.

This construction produces a leafless tree with paths corresponding exactly to the charac-

teristic functions of positive cones of orderings in LO(G). (The construction may be modified

to produce a tree with paths corresponding to O(G); it is only necessary to define Sσ as the

normal subsemigroup generated by those elements.)

In the case that G is computable, we can produce a computable tree having paths cor-

responding to the orderings in LO(G), but the construction requires some guessing and as

a consequence will not be leafless. The construction for the tree of bi-orderings of a com-

putable group appears in [57], and a hybrid of Solomon’s construction and the one we have

just seen yields the tree of left orderings of a computable group. (Essentially, it is only nec-

essary to relax the normality condition in Solomon’s construction.) We present the modified

construction here for the reader’s convenience.

Assume G is computable, and let {gi}i∈ω be a computable enumeration of G− {eG}.

Construction.

Stage 0. Initialize T = {〈 〉}, and S0
〈〉 = ∅.

Stage s + 1. Now, for each leaf σ in T at the end of stage s, do the following: If eG 6∈ Sσ,

add both σ_0 and σ_1 to T .
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Now, define Sσ_1 to be

Sσ ∪ {gs} ∪ {ab | a, b ∈ Sσ ∪ {gs}} ,

and define Sσ_0 to be

Sσ ∪ {g−1
s } ∪

{
ab | a, b ∈ Sσ ∪ {g−1

s }
}
.

This ends the construction.

The tree T is easily seen to be computable. If X is a path in T , then the collection

PX = {gi | X(i) = 1} ∪ {g−1
i | X(i) = 0} ∪ {eG}

is easily seen to satisfy the conditions (1) and (2) above, guaranteeing it is the positive cone

of a left ordering of G. Furthermore, it is clear that PX has the same Turing degree as X.

Later, we will give a construction producing a computable tree, and the paths of this tree

will be in Turing degree preserving bijective correspondence with the bi-orderings of a given

computable semigroup. Because there is no simple corresponding notion of “positive cone”

for a semigroup2 the construction is necessarily somewhat different.

General criteria ensuring that a group be orderable or left-orderable have been studied

extensively in the past (see, for example, [5], [25], and [38] for detailed expositions). Here

we are concerned with the question of the algorithmic complexity of the orders on some

computable group, and whether a computable group might admit a computable ordering of

its elements3.

2See [25] for a discussion of notions of cones for semigroups.
3For a discussion on the Turing degrees attained by orders of groups in the case when the group is abelian
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In the following section, we see that conditions sufficient to ensure that a group admits

a left ordering in each Turing degree similarly ensure there is an ordering of arbitrary truth-

table (tt-)degree (these degrees are a refinement of the Turing degrees).

4.2 An ordering in every tt-degree

We begin by introducing two notions of reducibility that are strictly stronger than Turing

reducibility.

A set A is weak truth-table (wtt-) reducible to a set B if A ≤T B and the computation of

A from B is predictable in that the amount of information sufficient to compute A from B

is itself computable. Formally, there is an e ∈ N and a computable function f so that

A(x) = ϕB�f(x)
e (x),

where B � n indicates the restriction of the characteristic function of B to its first n bits. In

this case, we write A ≤wtt B.

A set A is truth-table reducible to a set B if A ≤wtt B and in addition, the algorithm

wtt-computing A from B is entirely robust. In other words, it halts on every input even if

the oracle is not giving correct information about B. Formally, for all x ∈ N and all Y ⊆ N,

the computation ϕYe (x) must halt, though it need not take the value A(x).

Obviously ≤tt =⇒ ≤wtt =⇒ ≤T .

The wtt-degrees and tt-degrees are defined in exact analogy with the Turing degrees.

Turing degrees may (but do not always) shatter into a countable infinity of wtt-degrees, and

or, more generally, 2-step nilpotent, see [57].
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these in turn may shatter into smaller tt-degrees. For more information on these strong

reducibilities and the induced upper-semilattices of strong degrees, see [43, 41].

In the following theorem, we give conditions sufficient to guarantee that the group G ad-

mits a left-ordering in each tt-degree. Groups satisfying these conditions admit left-orderings

of their elements having arbitrary (in a strong sense) algorithmic complexity. This improves

upon a result of [13], where the same conditions are shown to guarantee an ordering of

arbitrary Turing degree.

Theorem 4.2.1. Let G be a computable group, and P a c.e. family of finite subsets of

G− {e} satisfying the following conditions for every p ∈ P.

1. e 6∈ sgr(p),

2. (∃r0, r1 ∈ P)(∃g ∈ G)[r0, r1 ⊃ p ∧ g ∈ r0 ∧ g−1 ∈ r1], and

3. (∀g ∈ G, g 6= e)(∃r ∈ P)[r ⊇ p ∧ (g ∈ r ∨ g−1 ∈ r)].

Then, G admits a left ordering in every tt-degree.

Proof. We construct a map T : 2<ω → P so that if σ < τ then T (σ) ⊂ T (τ), and for any

X ⊆ N we have P+
X =

⋃
n T (X � n) has for every P+

X is a pure4 subsemigroup not containing

{e}. We will see that P+
X ≡tt X, and so PX = P+

X ∪ {e} is a left-ordering of G of the same

(arbitrary) tt-degree of X.

Let G− {e} = {g0, g1, . . .} and P = {p0, p1, . . .} be computable enumerations of G− {e}

and P , respectively.

Construction.

4A subsemigroup of a group G is pure if contains at most one of g and g−1 for each g ∈ G.
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Stage 0. Set T (〈 〉) = p0.

Stage s+ 1. At the beginning of this stage, we have T defined on 2≤s. For each σ of length

s, find the first r0 and r1 in P and the first g in G witnessing the satisfaction of condition

(2) for p = T (σ). We choose them so that g ∈ r1 and g−1 ∈ r0. Find the first gj0 and gj1 so

that neither these elements nor their inverses are in r0 and r1, respectively. Let r′0 (and r′1,

respectively) be the first element of P extending r0 (r1) containing gj0 or g−1
j0

(gj1 or g−1
j1

).

Such r′i exist by condition (3).

Set T (σ_i) = r′i for i = 0, 1.

This completes the construction.

Now, let x be an arbitrary tt-degree, and X an infinite set with degtt(X) = x. Define

P+
X =

⋃
s T (X � s).

Since for each s, sgr(T (X � s)) is a pure subsemigroup not containing e, we have that

P+
X = sgr(P+

X ) is as well. (Note that this equality holds since if a, b ∈ P+
X , but ab 6∈ P+

X , then

for some i, gi = (ab)−1 ∈ P+
X . All three elements will have entered by some stage j and this

information is captured by some node σ < X of length j. The element of P mapped to this

node by T will fail condition (1).) Furthermore, it is clear that for each gi 6= e, either gi or

g−1
i enters P+

X by stage i+ 1, so PX = P+
X ∪ {e} defines a full left-ordering of G.

To see that PX ≤tt X, we observe the following. To determine if gi ∈ PX , we use the fact

that for each σ of length i+ 1, either gi or g−1
i is in T (σ). So we have

gi ∈ PX ⇐⇒ gi ∈ T (X � (i+ 1)).
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Note that this is a tt-reduction as the initial segment of length i + 1 of any set X is in the

domain of T .

For the reverse reduction, X ≤tt PX , we check to see if i ∈ X via the following algorithm:

Construct T until the domain includes all nodes of length i+ 1.

If PX ⊇ T (σ) for some σ of length i+ 1, then i ∈ X if and only if the last bit of

σ is 1.

If PX does not contain the image of any σ of length i+ 1, output 0.

If PX is in fact the partial order defined from the construction above, this algorithm yields

the correct answer to the membership question on X. If it is not, it halts, but may not yield

a correct answer. Thus the algorithm is a valid tt-reduction, and we have deg(P ) = x.

4.3 Computable copies of Zω with no computable or-

dering

In 1986, Downey and Kurtz [21] gave a construction of a computable copy G of Zω = ⊕ωZ

admitting no computable ordering of its elements. Because the group is computable, the

space of orders correspond to the paths in a computable tree via a construction presented

by Solomon [57]. It is shown in [57] that any computable copy of this group has orders in

every Turing degree ≥ 0′. This can be viewed as a consequence of the fact that that the

(computable) divisible closure of G, G, is isomorphic to Qω, and any ordering on one of

them, yields an ordering on the other of the same Turing degree [51]. As a vector space,
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any computable (or c.e.) copy of G has a dependence algorithm of c.e. degree, and it is

always possible to produce an ordering in any Turing degree ≥T the degree of the dependence

algorithm5 as there is a basis for the space in each of these degrees [39]. Thus any computable

copy of Zω must admit an ordering in each Turing degree ≥ 0′.

However, for any such computable copy of this group, the tree of orderings is computable,

so the Jockusch-Soare Low Basis Theorem [37] applies and we observe that there necessarily

exists an ordering of low Turing degree.

It is natural to ask whether the low ordering of the group constructed in [21] is a conse-

quence of G having a dependence algorithm of this same (or lower) low degree. (Of course

G cannot have a computable dependence algorithm.) We imagine there are constructions

of computable or c.e. copies of Qω having dependence algorithms of degree 0′ (in fact, of

degree a for any c.e. degree a), but to this author’s knowledge no assessment of the algo-

rithmic complexity of orderings of their elements has been made. (Perhaps each existing

example admits orderings of every Turing degree. The computable examples must all have

an ordering of low degree.)

In the case of a computable abelian group with infinite rank, all Turing degrees ≥ 0′ occur

in the spectrum, and by the low basis theorem, an ordering of low degree must exist. Here

we construct a computable abelian group of infinite rank admitting no computable orderings

having the additional property its computable divisible closure has a complete dependence

algorithm.

In the following construction, we produce a computable copy of Zω so that the dependence

5The dependence algorithm for a computable or c.e. vector space is the collection of all finite dependant
subsets of its universe, suitably coded into the natural numbers.
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algorithm in the computable divisible closure must be complete (i.e. it must compute the

halting set, K). The group is computable so, by the discussion above, it must have an

ordering of low Turing degree. We conclude that a torsion-free abelian group, and indeed

the copy of the vector space over Q that is its computable divisible closure, may admit

orderings of properly lower Turing degree than the corresponding dependence algorithm.

It is not known whether this spectrum of degrees of orderings for this group is closed

upward in the Turing degrees.

Theorem 4.3.1. There is a computable copy V of Qω having no computable ordering and

a complete dependence algorithm.

Proof. We obtain a computable copy G of Zω, the computable divisible closure of which is

the group V we seek.

The domain of G will be N, and we simultaneously construct the multiplication table,

·, of G and the isomorphism f to Zω. The multiplication table will be computable, the

isomorphism will not be. In fact, f will be 2-c.e.

We will use 0 to denote the identity of G and Zω.

We aim to satisfy the following requirements for all e:

Ce: If 〈i, j〉 = e, then i · j is defined.

Ie: There is an i so that e · i = 0.

Ne: ϕe does not compute an ordering of G.

De: e ∈ K iff 5e and 5e+ 1 are dependent.
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The priority ordering is N0 < D0 < C0 < I0 < N1 < . . . . Let K0 ⊆ K1 ⊆ · · · be a

computable approximation of the halting set K by finite sets.

A requirement Re is active at stage s if it is the least requirement satisfying the following.

Re is

Ce and e = 〈i, j〉, f(i) and f(j) exist, and there is no k so that i · j = k.

Ie and f(e) is defined but there is no k so that e · k = 0.

De and (1) f is not defined on 5e, 5e+ 1, or (2) f is defined on 5e and 5e+ 1, e ∈ Ks, and

e has not been coded (defined later).

Ne and (1) f is not defined on 5e + 2, 5e + 3, or (2) f is defined on 5e + 2 and 5e + 3,

ϕe,s(5e+ 2) ↓, ϕe,s(5e+ 3) ↓, and e has not been defeated (defined later).

Construction.

Stage 0. Set f(0) = 0. That’s it.

Stage s+1. Let n = max(dom(f)), and Re the highest priority requirement that is active.

• If Re is Ce, let k be the least natural number ≥ n that is 5m+ 4 for some m ∈ ω. Set

f(k) = f(i) + f(j) where 〈i, j〉 = e. Now i · j = k.

• If Re is Ie, let k be the least natural number ≥ n that is 5m+ 4 for some m ∈ ω. Set

f(k) = −f(e). Now k · e = 0.

• If Re is De and is active by virtue of part (1) of the condition, define f(5e) = 04e1

and f(5e+ 1) = 04e+11. If De is active by virtue of (2), these definitions have already
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been made, and e ∈ Ks. We now take action so that e is coded into the group. For

k ∈ dom(f), we write k[`] for the `th bit of f(k).

Let m = 1 + max{k[4e + 1]|k ∈ dom(f)} and make the following update to f . Note

that this redefinition of the isomorphism does not affect the part of the multiplication

table for G that has been defined so far. For each k ∈ dom(f), set

f(k)[i] =


f(k)[i], i 6= 4e+ 1, 4e+ 2

0, i = 4e+ 2

f(k)[4e+ 1] + 2mf(k)[4e+ 2], i = 4e+ 1.

Here, the f on the left of the equals sign is the new value, and that on the right is the

old value. Now f(5e+ 1) = 2mf(5e), and 5e and 5e+ 1 are dependent.

• If Re is Ne and is active by virtue of part (1) of the condition, define f(5e+2) = 04e+21

and f(5e+ 3) = 04e+31. If Ne is active by virtue of (2), these definitions have already

been made, and ϕe,s ↓ for both 5e + 2 and 5e + 3. We interpret ϕe as computing an

ordering <e in the following sense. First, it must be total, and supposing that, we take

ϕe(a) = 0 to mean that a <e 0, and ϕe(a) 6= 0 to mean that 0 <e a.

Case 1. Both ϕe(5e+ 2) and ϕe(5e+ 3) are non-zero. Then both are positive for <e, and

the idea is to update f so that an appropriate linear combination of them is zero.

Let m = 1 + max{k[4e+ 3] | k ∈ dom(f)}, and set
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f(k)[i] =


f(k)[i], i 6= 4e+ 3, 4e+ 4

0, i = 4e+ 4

f(k)[4e+ 1]− 2mf(k)[4e+ 2], i = 4e+ 1.

Now f(5e+ 3) + 2mf(5e+ 2) = 0, which is inconsistent with <e.

Cases 2–4. In all other cases we make similar arrangements, always producing a map so that

the group constructed is inconsistent with the possible ordering being considered.

The appropriate lemmas are easy to check, and are much like those in [21], except that

it is necessary to check the degree of the dependence algorithm, and we proceed with this

task.

Let D be the dependence algorithm for V , the computable divisible closure of G ∼= Zω.

Let g be the computable embedding from G into V .

Lemma 4.3.2. D =T K.

Proof. For any computable (or c.e.) vector space, the dependence algorithm is c.e., so always

D ≤T K.

To check to see if n ∈ K, ask D if g(5n) and g(5n + 1) are dependent. They are if and

only if n ∈ Ks for some s.

Corollary 4.3.3. There is a computable copy of Zω admitting no computable ordering, for

which the dependence algorithm of the computable divisible closure is complete.
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When an orderable group has a computable copy admitting no computable orderings,

there are interesting consequences for the (topological) space of (left- or bi-) orderings of

that group. We gave a non-effective algorithm for obtaining a tree with paths corresponding

exactly to the left orderings of a countable group. In the case that the group is computable,

this algorithm can be modified and a computable tree having paths in Turing degree pre-

serving correspondence to left-orderings of the group may be obtained. In [57], an effective

construction of the tree of bi-orderings for a computable group is given. In all cases, these col-

lections of paths inherit the natural topology on the paths of 2<ω, and thus form a subspace

of Cantor space.

The space of left- and bi-orderings of groups have been studied, for example, in [12, 13,

42, 49]. An orderable group has either finitely many or uncountably many left-orderings

of its elements. For bi-orderings, a countable infinity of orderings becomes accessible [4].

Of interest to many is the question of whether, for a given group, either the space of left-

orderings or the space of bi-orderings is homeomorphic to the Cantor space in which it is

embedded.

Because an isolated path in a computable tree must be computable, we can make the

observation that a tree T having no computable paths must have that [T ] (if it is not

empty) is homeomorphic to the Cantor space. (A non-empty closed subspace of Cantor

space having no isolated points is perfect.) Thus, a countable group having a computable

copy admitting no computable orderings must (since these orderings correspond to the paths

in the appropriately obtained tree) have that its space of orderings is a Cantor space. The

topology of the space of orderings will not change under isomorphism from one copy of the

group to another, so in the event that such a copy can be found, this describes the space of
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orderings for that group’s isomorphism class.

For example, this observation, together with the copy of Zω given in Corollary 4.3.3

(or the Downey–Kurtz group), make short work of the fact that Zω has a Cantor space

as its space of orderings. (Both of these give a computable copy admitting no computable

orderings.) This result was originally proved in [12].

4.4 Trees of orderings of semigroups

As mentioned above, for a computable group, we can construct computable trees with paths

exactly corresponding to left- or bi-orderings of the group. Such a collection of paths is called

a Π0
1 class. A great body of research exists in the study of Π0

1 classes (see, for example, [6]).

A collection of sets of natural numbers forms a Π0
1 class exactly when their characteristic

functions may be realized as the infinite paths through some computable binary tree. Given

that the collection of left- or bi-orderings of a computable group may be realized as such

a class, and basis theorems (for example the Jockush-Soare Low Basis Theorem mentioned

above) about Π0
1 classes may thus be applied to the collection of orderings, we see the utility

in this viewpoint.

Consequently, it is worthwhile to cast the space of orderings of other computable algebraic

structures onto the collection of paths through some computable tree. Below we obtain such

a tree for a computable semigroup, though because there is no single viable notion of a

positive cone for an ordered semigroup (as there is in the case of groups), we cannot adapt

the construction for groups directly.

Recall that a semigroup is a set with an associative operation. An ordered semigroup is
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a semigroup S together with an order, <, on its elements satisfying for all x ∈ S

a < b =⇒ (xa < xb) ∧ (ax < bx).

Theorem 4.4.1. Let S be a computable semigroup. There is a computable tree T and a

Turing degree preserving bijection between the paths of T and the bi-orderings on S.

Proof. Let {p0, p1, . . .} be a computable listing of non-diagonal elements of S × S.

Paths in T will roughly correspond to characteristic functions of index sets of sets of pairs

of elements of S: For f ∈ [T ], define <f= {pi | f(i) = 1} ∪ {p∗i | f(i) = 0}, where p∗i = (b, a)

when pi = (a, b).

For an ordering < of S, define

f<(i) =


1, pi = (a, b) ∧ a < b

0, pi = (a, b) ∧ b < a.

It is clear that this is a bijection and preserves Turing degree.

In the construction that follows we will use approximations of orderings, ≤σ, defined at

each stage and corresponding to nodes added to the tree.

Construction:

Stage 0. Set T0 = {〈 〉}, and ≤〈 〉= ∅.

Stage s+ 1. For each node, σ of Ts having length s, do the following:

• If either ≤σ contains (a, b) and (b, a) for any a 6= b, or if (a, b) = pi and (b, a) = pj for

i, j < s and ≤σ contains neither, then this node is terminal.
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• Otherwise, add both σ_1 and σ_0 to Ts+1 and

1. add ps to ≤σ_1 and p∗s to ≤σ_0,

2. add (s, s) to ≤σ_i for i = 0, 1,

3. for all (a, b) and (c, d) in ≤σ_i, add (ac, bd) and (ca, db) to ≤σ_i, and

4. when (a, b) and (b, c) are in ≤σ_i, add (a, c) to ≤σ_i.

This completes the construction.

It is clear that T is computable.

Lemma 4.4.2. Let f ∈ [T ]. Then <f is an ordering.

Proof. Suppose f ∈ [T ]

1. a 6<f a. For no i is pi = (a, a).

2. For a 6= b, exactly one of a <f b and b <f a holds. If a 6= b, then pi = (a, b) for some

i ∈ ω, and f takes a value on i. If pj = (b, a), f must take the opposite value on j, for

it is a path, and otherwise, f � j + 1 would be terminal.

3. If a <f b and b <f c, then a <f c. Assume otherwise, and that pi = (a, b), pj = (b, c),

and pk = (c, a). Let s = max{i, j, k}. Then f � s + 1 is terminal, but again, f is a

path.

4. If a <f b and x ∈ S, then ax <f bx and xa <f xb. Let pi = (a, b), and s = max{i, x}.

Steps 2 and 4 in the construction provide that pj = (ax, bx) and pk = (xa, xb) are

added to ≤f�s+1. It follows (as in 2 just above) that f must take the value 1 on both

j and k.

83



Lemma 4.4.3. Let < be an ordering of S. Then f< ∈ [T ].

Proof. Let < be an ordering of S and define f< as described above.

Claim 4.4.4. �f<�n =def ≤f<�n −{(x, x)}x∈S ⊂ <.

Proof. By induction. Of course this is true for n = 0.

Assume it is true for n. Then �f<�n is part of a consistent ordering of S, so for no distinct

x and y will we have (x, y) and (y, x) in �f<�n. Thus, at stage n + 1, the node f< � n is

extended in both directions, and either pn or p∗n is added to �f<�n+1. Assume, without loss

of generality, that f<(n) = 1 and pn = (a, b) is added. By definition of f<, we must have

a < b. Similarly, all other pairs added to �f<�n+1 at this stage must be part of any consistent

ordering of S containing �f<�n and pn. Thus �f<�n+1⊂<, and we have the claim.

The proof we have given for the claim also establishes the lemma.

In the case of groups, the natural topology on this tree (though the paths are not positive

cones) coincides with that which would be obtained from the trees having paths correspond-

ing to positive cones. This is seen immediately from the dual characterizations of the topology

on the space of ordering given by Sikora in [49], and the proofs of their equivalence6.

6The topology was presented as induced from a metric on the orderings, as well as being characterized as
the topology obtained from a particular subbasis. (The subbasis consisted of sets of the form U(a,b) = {< | <
is an ordering of the group, and a < b}.) For the countable case, these are easily seen to be equivalent to
the topology inherited from the tree.
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Thus, the basis theorems of Π0
1 classes apply as well to semigroups, and we can conclude

that a computable copy of an orderable semigroup will admit a low ordering of its elements.

Furthermore, and as in the case with groups, we can conclude that the space is isomorphic

to Cantor space when there is a computable copy having no computable ordering.
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