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Abstract. We establish that for every computably enumerable
(c.e.) Turing degree b, the upper cone of c.e. Turing degrees de-
termined by b is the degree spectrum of the successor relation of
some computable linear ordering. This follows from our main re-
sult, that for a large class of linear orderings, the degree spectrum
of the successor relation is closed upward in the c.e. Turing degrees.

1. Introduction and Preliminaries

The effective properties of countable structures and relations on these
structures have been thoroughly studied in recent decades. Of course,
it is most interesting to consider natural structures and relations. Here,
we focus on the successor relation of computable linear orderings. A
linear ordering L is computable if its universe, |L|, is computable and
L has a computable ordering relation. If L is infinite, we may assume
that its domain is the set N of natural numbers. In general, a structure
with domain N is computable if its atomic diagram is computable.

Our terminology and notation for computability theoretic notions
are as in Soare [12] and Odifreddi [8], and those particular to linear
orderings and computable structures are as in Rosenstein [9] and Ash-
Knight [1]. We write ω for the usual order type of N, and η for the
order type of the rational numbers Q. At times we abuse notation and
write L ∼= ω to indicate that the order type of the linear ordering L is
ω. For a linear ordering L, L∗ denotes the reverse ordering.

We write deg(A) for the Turing degree of the set A, and R for the set
of all computably enumerable (c.e.) Turing degrees. For a c.e. degree
a, the upper cone of c.e. degrees determined by a is

R(≥ a) = {b ∈ R | a ≤ b}.
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For a linear ordering L, the successor relation of L, SuccL, is defined
as follows: for a, b ∈ |L|,

SuccL(a, b) ⇐⇒ a <L b ∧ ¬∃c(a <L c <L b).

An element (a, b) of the successor relation is called a successor pair.
We consider this relation in the context of the following definition.

Definition 1.1 (Harizanov [7]). Let S be a relation on the domain of
a computable structure M . The (Turing) degree spectrum of S on M
is the set

DgSpM(S) = {deg(f(S)) | f : M ∼= M ′, and M ′ is computable}.
For a computability theoretic class C, we say that the relation S is

intrinsically C on M if the image of S under any isomorphism from M
to another computable structure belongs to C. The successor relation
of a computable linear ordering is intrinsically co-c.e., so its degree
spectrum must always be contained in the c.e. degrees.

There are two known examples of singleton degree spectra of the
successor relation. One is trivial. Namely, if L has only finitely many
successor pairs, then

DgSpL(SuccL) = {0},
in other words, SuccL is intrinsically computable. In fact, in this case L
is computably categorical ([5], [11]), that is, for every computable copy
M of L, there is a computable isomorphism from L to M . Downey
and Moses [4] constructed the other known singleton example: a linear
ordering L having a successor relation with degree spectrum

DgSpL(SuccL) = {0′},
so here SuccL is intrinsically complete. This example is an immediate
consequence of the following theorem.

Theorem 1.2 (Downey and Moses [4]). For any non-computable c.e. set
C, there is a computable linear ordering L such that SuccL ≡T C and
C ≤T SuccL′ for every computable linear ordering L′ ∼= L. Further-
more, L has the form

L = I0 + L0 + I1 + L1 + . . . ,

where each Ii is a block of length i + 3 and Li has order type η or
(η + 2 + η) · τ for some τ .

The other extreme, where the degree spectrum of the successor rela-
tion contains all c.e. degrees, is realized in the following example. This
result follows from a general theorem in [6], but we give an easy direct
proof here for the reader’s convenience.
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Example 1.3. For any c.e. set A, there is a linear ordering L ∼= ω so
that SuccL ≡T A. In other words,

DgSpω(Succω) = R(≥ 0).

Proof. Let A be an infinite c.e. set, and suppose that {As}s∈N is a
computable sequence of finite sets such that As ⊆ As+1, A = ∪sAs,
A0 = ∅, and |As+1 − As| = 1. Let 0 <L 2 <L 4 <L . . . , and declare
2n <L 2s + 1 <L 2n + 2 if n ∈ As+1 − As.

It is easy to see that (N, <L) is a computable linear ordering, (N, <L) ∼=
ω, and SuccL ≡T A. �

2. Main Result

We establish that for a large class of computable linear orderings,
the degree spectrum of the successor relation is closed upward in the
c.e. degrees.

Theorem 2.1. Let L be a computable linear ordering with domain N
such that the following condition holds:

(U) for every x ∈ N there are a, b ∈ N with SuccL(a, b) and x <L a.

Let A be a c.e. set so that SuccL ≤T A. Then there exists a computable
linear ordering M ∼= L with SuccM ≡T A.

Proof. Let L be a computable linear ordering satisfying condition (U),
and L0 ⊂ L1 ⊂ · · · be a computable approximation of L such that
each Li+1 is finite and has at least one element <L-greater than all
elements of Li. Assume A is a c.e. set with SuccL ≤T A, and that it is
non-computable. Let a0, a1, . . . be a 1− 1 computable enumeration of
A.

We build a computable M ∼= L such that SuccM ≡T A. This M will
be constructed by finite approximation (Ms)s∈ω, with M0 ⊂ M1 ⊂ · · ·
and M =

⋃
s Ms. Natural numbers are added to M in numerical order,

so the universe of M is N, and is hence computable.
At each stage s of the construction we specify the linear ordering

<M on |Ms|, which will determine an isomorphism fs : Ms → Lns , for
some ns. Hence, for m,m′ ∈ |Ms|, m <M m′ ⇐⇒ fs(m) <L fs(m

′).
For notational convenience, let ls0, . . . , l

s
ks

be the elements of the set
Lns in increasing <L order, and ms

0, . . . ,m
s
ks

be the elements of Ms

in increasing <M order. It will also be convenient to take ls−1 <L

x <L ls0 and lsks
<L x <L lsks+1 to simply mean x <L ls0 and lsks

<L x,
respectively. We adopt a similar convention for the elements of Ms.
Thus for all j ≤ ks, fs(l

s
j) = ms

j .
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Define r(s) = ms
ks

(the <M -largest element of Ms) for each s. This
strictly increasing computable function will play the role of a restraint
in the construction.

Construction1

Stage 0. Let n0 = 0, M0 = L0 = Ln0 , and f0 be the identity on M0.

Stage s + 1. From the previous stage, we have fs : Ms
∼= Lns .

Case 1. If as ≥ s, define ns+1 = ns+1 and add new elements to Ms to
obtain an Ms+1 for which there is an isomorphism fs+1 : Ms+1

∼= Lns+1

extending fs:

Let {z0 < z1 < . . . < zj} be the elements of Lns+1 − Lns

in the usual order, and ks+1 = card(Lns+1) + 1. Let m
be the least natural number not in |Ms|. For each i ≤ j,
if lk <L zi <L lk+1 for some −1 ≤ k ≤ ks+1, then declare
mk <M m + i < mk+1. Set fs+1 = fs ∪ {(m + i, zi)}i≤j.

Case 2. When as < s, we have a two-step action. First we extend
Ms by breaking existing successor pairs beyond the restraint r(as), and
then extend to an appropriate isomorphism. For every successor pair
(x, y) of Ms such that r(as) ≤Ms x <Ms y, insert a new natural number
<M -between x and y to obtain M ′

s ⊇ Ms:

Let m be the least natural number not in |Ms|, and let
t be such that ms

t = r(as), and k = card(|Ms|)− 1. For
each 0 ≤ i < k− t, declare ms

t+i <M ′
s
m + i <M ′

s
ms

t+i+1.

Next, find the least ns+1 > ns such that there is an embedding
f ′s : M ′

s → Lns+1 with f ′s(x) = fs(x) for all x ≤Ms r(as) in |Ms|, and
f ′s(x) ≥L fs(x) for all other x ∈ |Ms|. Such an ns+1 exists because L
has no rightmost element. We can then add new elements to M ′

s to
obtain Ms+1 for which there is an isomorphism fs+1 : Ms+1

∼= Lns+1

extending f ′s via the same process used in Case 1 above.

This completes the construction.

Note that since M0 ⊂ M1 ⊂ M2 ⊂ · · · is a computable sequence
of finite linear orderings, M = ∪sMs is a computable linear ordering.
Also, since ns+1 > ns, lims ns = +∞ and L = ∪sLns .

1This is a modification of our original construction, and we are grateful to the
referee for suggesting simplifications.
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We proceed to show that f = lims fs exists and is an isomorphism
from M to L. At the same time, we show that f is computable from
A. Subsequently, we establish A ≡T SuccM .

In demonstrating these facts, we make use of a function h defined as
follows. Given x, let s be the least such that x ∈ |Ms|. Define h(x) ≥ s
to be the least such that A � s+1 = Ah(x) � s+1. Note that x ∈ Mh(x),
and h is an A-computable function.

Lemma 2.2. The function f = lims fs exists, f is an isomorphism,
and f ≤T A.

Proof. Given x, choose s so that x ∈ Ms and note that x ≤M r(s).
Then for each t ≥ h(r(s)), we have ft+1(x) = ft(x) (in fact, this is true
of all y ∈ Mt such that y ≤M r(s)). Thus, the limit f(x) = lims fs(x)
exists. Furthermore, at each stage s, fs is order-preserving, and as a
result f is as well.

To see that f is an isomorphism, it remains to establish bijectiv-
ity. Observe that, by construction, we have for all s that fs(x) ≤L

fs+1(x) ≤L f(x). Thus, for any y ∈ Lns , we have y ≤L fs(r(s)) ≤L

fh(r(s))(r(s)) = ft(r(s)) = f(r(s)) for all t ≥ h(r(s)). Hence, f−1
t+1(y) =

f−1
t (y) for any such y and all t ≥ h(r(s)). Because lims ns = +∞, f

must be a bijection.
Since h is an A-computable function and r is computable, it is clear

that f is A-computable. �

Lemma 2.3. A ≡T SuccM .

Proof. We have (x, y) ∈ SuccM if and only if (f(x), f(y)) ∈ SuccL.
Since A computes both f and SuccL, it follows that SuccM ≤T A.

Conversely, to determine whether n ∈ A, let s be such that for some
(x, y) ∈ SuccM , we have r(n) ≤Ms x <Ms y, with both x and y in Ms.
Since M ∼= L by Lemma 2.2, M satisfies condition (U) as well and
such an s exists. Note that since at least one element is added to M
at each stage, n < s. If n = at for some later stage t, s ≤ t, then the
construction ensures that (x, y) /∈ SuccM . Consequently, n ∈ A if and
only if n = at for some t < s, and hence A ≤T SuccM . �

This completes the proof of Theorem 2.1.
�

The result in Theorem 2.1 applies to a somewhat broader class of
linear orderings than just those satisfying condition (U). First, for any
linear ordering L, the degree spectrum of the successor relation in L
will be identical to that of L∗, so a descending sequence of successor
pairs satisfying a symmetric condition (U∗) is similarly sufficient.
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Additionally, suppose that L is a computable linear ordering in which
(U) does not hold. Then L may be decomposed as L = L2 +L1, where
L1 has order type 1 or 1 + η. The ordering L2 is an initial segment of
L and is computable since it is definable with a quantifier-free formula,
and its successor relation is at most finitely different from that of L.
Consequently, DgSpL(SuccL) = DgSpL2(SuccL2), and if L2 satisfies
(U), DgSpL(SuccL) will be closed upward in the c.e. degrees.

This process may be iterated any finite number of times to obtain a
computable initial segment L′ of L with DgSpL(SuccL) = DgSpL′(SuccL′).
If L′ satisfies (U), then DgSpL′(SuccL′), and hence DgSpL(SuccL), will
be closed upward in the c.e. degrees.

If this decomposition process continues ad infinitum, the theorem
does not apply. We characterize these types of linear orderings (R1,
R2, R3, and R4) in the following corollary.

Corollary 2.4. Let M be a computable linear ordering with infinitely
many successor pairs. If M 6∼= Ri for 1 ≤ i ≤ 4, where Ri is given
below, then DgSpM(SuccM) is closed upward in the c.e. degrees.

Here, F1, F2 are arbitrary (possibly empty) linear orderings with finitely
many successor pairs, ni, n

′
i ∈ ω are finite blocks of the appropriate size,

and R may be any linear ordering:
R1 = F1 + ω + R + ω∗ + F2,
R2 = n0 + η + n1 + η + · · ·+ R + ω∗ + F2,
R3 = F1 + ω + R + · · ·+ η + n′1 + η + n′0,
R4 = n0 + η + n1 + η + · · ·+ R + · · ·+ η + n′1 + η + n′0.

Proof. Let L be a computable linear ordering for which (U) does not
hold. We decompose L as described above to obtain

L = R + . . . + Ln + . . . + L2 + L1,

where each Li is of type 1 or 1 + η.

Case 1. If for some k, and all i > k, Li is of type 1, then R+ . . .+Ln +
. . .+Lk+1 is of type R+ω∗. The remaining part of the decomposition,
F = Lk + Lk−1 + . . . + L2 + L1 is a finite sum of orderings of type 1
or 1 + η, and so F can have only finitely many successor pairs. In this
case, we have

L = R + ω∗ + F,

where F is a linear ordering having finitely many successor pairs.

Case 2. If Case 1 does not hold, then for each k, there is j > k
so that Lj is of type 1 + η. Hence, at most finitely many blocks of
type 1 may appear consecutively. If n such blocks appear, they may
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be represented as a single block, n. In this case, we have

L = R + . . . + η + n1 + η + n0,

where the ni’s are appropriate finite blocks.

Upon recalling that for any linear ordering L, DgSpL(SuccL) =
DgSpL∗(SuccL∗), we arrive at the four decompositions above. �

In Theorem 1.2, the computable linear ordering L is constructed so
that DgSpL(SuccL) ⊆ R(≥ deg(C)). Because of its form, this ordering
satisfies the condition (U) in Theorem 2.1, and we have the following.

Theorem 2.5. For any c.e. degree a, there is a linear ordering L so
that the degree spectrum of SuccL is exactly the upper cone of c.e degrees
determined by a, that is, DgSpL(SuccL) = R(≥ a).

Proof. If a is computable then the result follows from Example 1.3.
Let a be a non-computable c.e. degree. Theorem 1.2 yields a linear
ordering L with deg(SuccL) = a that satisfies condition (U) of Theorem
2.1, and provides that DgSpL(SuccL) is contained in the cone above
SuccL. Theorem 2.1 says that DgSpL(SuccL) contains that cone. �

It will be interesting to investigate whether there is a computable lin-
ear ordering for which the successor relation is intrinsically incomplete,2

in particular, whether the degree spectrum of the successor relation can
consist of a single degree different from 0 and 0′ (see [3]). On the other
hand, a similar question for the degree spectrum of the atom relation of
computable Boolean algebras with infinitely many atoms was resolved
by Downey and Remmel. Remmel [10] established that such a spec-
trum is closed upward in the c.e. degrees, and Downey [2] showed that
such a spectrum must contain an incomplete degree.
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