
PROJECT: CONSISTENCY

ALGORITHMIC LEARNING THEORY, SUMMER 2014

1. Introduction

A learner that conjectures a grammar for a language that is not consistent with
what he or she already knows (from the text) to be in the language would be a
foolish learner indeed. As an extreme example, imagine a learner that has seen
the following text: 1, 2, 4, 6, . . .. It would be foolish for him to offer as a guess,
“The set of all even numbers.” Learners that do not do such silly things are called
consistent learners. In this project, you’ll investigate how requiring that a learner
be consistent affects the classes of languages that they can learn.

2. Computability theory: Lemmas and exercises

Lemma 1. Let h(j, k) be a total, computable function of two variables. For each
j ∈ N, define fj(k) = h(j, k). Then there is a computable set S ⊆ N such that for
all j, fj is not the charactaristic function of S.

Exercise 1. Let Li = {〈i, x〉 | x ∈ Wi}. Find a computable function h so that for
each i, h(i) gives an index for Li.

3. Learning Theory I: Identification, lemmas and exercises

Lemma 2. For each i ∈ N, define Li = {〈i, x〉 | x ∈ Wi}, and let L = {Li}i∈N.
Then L is identifiable. Moreover, L is identifiable by a computable learner.

4. Learning Theory II: Limitations

Definition 1. Learning function ϕ ∈ F is called consistent if for all σ ∈ SEQ,
rng(σ) ⊆Wϕ(σ).

Proposition 1. [Fcon] = [F ].

Proposition 2. Let ϕ be a consistent computable learning function. If ϕ identifies
L, then L contains only recursive languages (i.e., L ⊆ REREC).

Proposition 3. There is a set of computable languages L ⊆ REREC that is iden-
tifiable by a recursive learner, but not by a consistent recursive learner.

1


